Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capability Electrode Material for High Specific Performance Supercapacitors

Version 1 : Received: 26 October 2018 / Approved: 26 October 2018 / Online: 26 October 2018 (11:07:54 CEST)

A peer-reviewed article of this Preprint also exists.

Kumar, Y.A.; Kim, H.-J. Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors. Energies 2018, 11, 3285. Kumar, Y.A.; Kim, H.-J. Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors. Energies 2018, 11, 3285.

Abstract

CoO-ZnO-based composites have attracted considerable attention for the development of energy storage devices because of their multifunctional characterization and ease of integration with existing components. This paper reports the synthesis of CoO@ZnO (CZ) nanostructures on Ni foam by the CBD method for facile and eco-friendly supercapacitor applications. The formation of a CoO@ZnO electrode functioned with cobalt, zinc, nickel and oxygen groups was confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, low and high-resolution of scanning electron microscopy, and transmission electron microscopy. The as-synthesized hierarchical nanocorn skeleton-like structure of CoO@ZnO-3h (CZ3h) electrode delivered a higher specific capacitance of 1136 F/g at a current density of 3 A/g with outstanding cycling stability, showing 98.3% capacitance retention over 3000 cycles in an aqueous 2 M KOH electrolyte solution. This retention was significantly better than that of other prepared electrodes, such as CoO (CO), ZnO (ZO), CoO@ZnO-1h (CZ1h), and CoO@ZnO-7h (CZ7h) (274, 383, 240 and 537 F/g, respectively). This superior capacitance was attributed to the ideal surface morphology of CZ3h, which is responsible for the rapid electron/ion transfer between the electrolyte and electrode surface area. The enhanced features of the CZ3h electrode highlight potential applications in high performance supercapacitors, solar cells, photocatalysis, and electrocatalysis.

Keywords

nanorod structure; nanocorn structure; Hierarchical nanocorn skeleton-like structure; energy storage devices

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.