Negrete, O.A.; Peña, F.J.; Vargas, P. Magnetocaloric Effect in an Antidot: The Effect of the Aharonov-Bohm Flux and Antidot Radius. Entropy2018, 20, 888.
Negrete, O.A.; Peña, F.J.; Vargas, P. Magnetocaloric Effect in an Antidot: The Effect of the Aharonov-Bohm Flux and Antidot Radius. Entropy 2018, 20, 888.
Negrete, O.A.; Peña, F.J.; Vargas, P. Magnetocaloric Effect in an Antidot: The Effect of the Aharonov-Bohm Flux and Antidot Radius. Entropy2018, 20, 888.
Negrete, O.A.; Peña, F.J.; Vargas, P. Magnetocaloric Effect in an Antidot: The Effect of the Aharonov-Bohm Flux and Antidot Radius. Entropy 2018, 20, 888.
Abstract
In this work, we report the magnetocaloric effect (MCE) in a quantum dot corresponding to an electron interacting with an antidot, under the effect of an Aharonov-Bohm flux subjected to a parabolic confinement potential. We use the Bogachek and Landman model, which additionally allows the study of quantum dots with Fock-Darwin energy levels for vanishing antidot radius and flux. We find that the Aharonov-Bohm flux (AB-flux) strongly controls the oscillatory behaviour of the MCE, thus acting as a control parameter for the cooling or heating of the magnetocaloric effect. We propose a way to detect AB-flux by measuring temperature differences.
Keywords
agnetocaloric effect; quantum dot; Aharonov-Bohm
Subject
PHYSICAL SCIENCES, Condensed Matter Physics
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.