Preprint Review Version 1 This version is not peer-reviewed

 Brine-Dependent Recovery Processes (Smart-Water/Low-Salinity-Water) in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts

Version 1 : Received: 6 October 2018 / Approved: 8 October 2018 / Online: 8 October 2018 (05:18:14 CEST)

A peer-reviewed article of this Preprint also exists.

Awolayo, A.N.; Sarma, H.K.; Nghiem, L.X. Brine-Dependent Recovery Processes in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts. Energies 2018, 11, 3020. Awolayo, A.N.; Sarma, H.K.; Nghiem, L.X. Brine-Dependent Recovery Processes in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts. Energies 2018, 11, 3020.

Journal reference: Energies 2018, 11, 3020
DOI: 10.3390/en11113020

Abstract

Brine-dependent recovery process has seen much global research efforts in the past two decades because of their benefits over other oil recovery methods. The process involves the tweaking of the ionic composition and strength of the injected water to improve oil production. In recent years, several studies ranging from laboratory coreflood experiments by many researchers to field trials by several companies admit to the potential of recovering additional oil in sandstone and carbonate reservoirs. Sandstone and carbonate rocks are composed of completely different minerals, with varying degree of complexity and heterogeneity, but wettability alteration has been widely considered as the consequence rather than the cause of brine-dependent recovery. However, there is no consensus on the cause as several mechanisms have been proposed to relate the wettability changes to the improved recovery. This review paper aims to provide a state-of-the-art development in published research and various efforts of the industry. This review outlines an overview of laboratory and field observations, descriptions of underlying mechanisms and their validity, the complexity of the oil-brine-rock interactions, modelling works, and comparison between sandstone and carbonate rocks. The provided information is intended to provide the reader with up-to-date information, point to relevant studies for those who are new and those implementing either laboratory- or field-scale projects to speed up the process of further investigations in this research area. Overall, the outcome of this review would potentially be of immense benefit to the oil industry.

Subject Areas

state-of-the-art review; brine-dependent recovery; potential determining ions; chemical mechanisms; sandstone and carbonate rocks; wettability alteration; waterflooding; modeling

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.