Preprint Article Version 1 This version is not peer-reviewed

Benzotriazole Uptake and Removal in Vegetated Biofilter Mesocosms Planted with Carex Praegracilis

Version 1 : Received: 1 October 2018 / Approved: 1 October 2018 / Online: 1 October 2018 (11:55:42 CEST)

A peer-reviewed article of this Preprint also exists.

Pritchard, J.C.; Cho, Y.-M.; Ashoori, N.; Wolfand, J.M.; Sutton, J.D.; Carolan, M.E.; Gamez, E.; Doan, K.; Wiley, J.S.; Luthy, R.G. Benzotriazole Uptake and Removal in Vegetated Biofilter Mesocosms Planted with Carex praegracilis. Water 2018, 10, 1605. Pritchard, J.C.; Cho, Y.-M.; Ashoori, N.; Wolfand, J.M.; Sutton, J.D.; Carolan, M.E.; Gamez, E.; Doan, K.; Wiley, J.S.; Luthy, R.G. Benzotriazole Uptake and Removal in Vegetated Biofilter Mesocosms Planted with Carex praegracilis. Water 2018, 10, 1605.

Journal reference: Water 2018, 10, 1605
DOI: 10.3390/w10111605

Abstract

Urban stormwater runoff is a significant source of pollutants into surface water bodies. One such pollutant, 1H-benzotriazole, is a persistent, recalcitrant trace organic contaminant commonly used as a corrosion inhibitor in airplane deicing processes, automobile liquids, and engine coolants. This study explored the removal of 1H-benzotriazole from stormwater using bench-scale biofilter mesocosms planted with California native sedge, Carex praegracilis, over a series of three storm events and monitoring period. Benzotriazole metabolites glycosylated benzotriazole and benzotriazole alanine were detected and benzotriazole and glycosylated benzotriazole partitioning in the system were quantified. With a treatment length of seven days, 97.1% of benzotriazole was removed from stormwater effluent from vegetated biofilter mesocosms. Significant concentrations of benzotriazole and glycosylated benzotriazole were observed in the C. praegracilis leaf and root tissue. Additionally, a significant missing sink of benzotriazole developed in the vegetated biofilter mesocosms. This study suggests that vegetation may increase the operating lifespan of bioretention basins by enhancing degradation of dissolved trace organic contaminants, thus increasing the sorption capacity of the geomedia.

Subject Areas

benzotriazole; biofilter; bioretention; green infrastructure; phytoremediation; sorption; stormwater

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.