Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Flexible Wireless Sensor Network based on Ultra-Wide Band Technology for Ground Instability Monitoring

Version 1 : Received: 20 July 2018 / Approved: 20 July 2018 / Online: 20 July 2018 (11:56:07 CEST)

A peer-reviewed article of this Preprint also exists.

Mucchi, L.; Jayousi, S.; Martinelli, A.; Caputo, S.; Intrieri, E.; Gigli, G.; Gracchi, T.; Mugnai, F.; Favalli, M.; Fornaciai, A.; Nannipieri, L. A Flexible Wireless Sensor Network Based on Ultra-Wide Band Technology for Ground Instability Monitoring. Sensors 2018, 18, 2948. Mucchi, L.; Jayousi, S.; Martinelli, A.; Caputo, S.; Intrieri, E.; Gigli, G.; Gracchi, T.; Mugnai, F.; Favalli, M.; Fornaciai, A.; Nannipieri, L. A Flexible Wireless Sensor Network Based on Ultra-Wide Band Technology for Ground Instability Monitoring. Sensors 2018, 18, 2948.

Abstract

An innovative wireless sensor network (WSN) based on Ultra-Wide Band (UWB) technology for 3D accurate superficial monitoring of ground deformations, as landslides and subsidence, is proposed. The system has been designed and developed as part of an European Life+ project, called Wi-GIM (Wireless Sensor Network for Ground Instability Monitoring). The details of the architecture, the localization via wireless technology and data processing protocols are described. The flexibility and accuracy achieved by the UWB two-way ranging technique is analysed and compared with the traditional systems, such as robotic total stations (RTSs), Ground-based Interferometric Synthetic Aperture Radar (GB-InSAR), highlighting the pros and cons of the UWB solution to detect the surface movements. An extensive field trial campaign allows the validation of the system and the analysis of its sensitivity to different factors (e.g., sensor nodes inter-visibility, effects of the temperature, etc.). The Wi-GIM system represents a promising solution for landslide monitoring and it can be adopted in conjunction with traditional systems or as an alternative in areas where the available resources are inadequate. The versatility, easy/fast deployment and cost-effectiveness, together with the good accuracy, make the Wi-GIM system a possible solution for municipalities that cannot afford expensive/complex systems to monitor potential landslides in their territory.

Keywords

Ultra-Wide Band; wireless sensor networks; monitoring; warning system; ground instability; landslide; Time Of Flight, Two-way ranging.

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.