Preprint Review Version 1 This version is not peer-reviewed

UNDERSTANDING THE ROLE OF DYSFUNCTIONAL AND HEALTHY MITOCHONDRIA IN STROKE PATHOLOGY AND ITS TREATMENT

Version 1 : Received: 19 June 2018 / Approved: 19 June 2018 / Online: 19 June 2018 (14:27:25 CEST)

A peer-reviewed article of this Preprint also exists.

Nguyen, H.; Zarriello, S.; Rajani, M.; Tuazon, J.; Napoli, E.; Borlongan, C.V. Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment. Int. J. Mol. Sci. 2018, 19, 2127. Nguyen, H.; Zarriello, S.; Rajani, M.; Tuazon, J.; Napoli, E.; Borlongan, C.V. Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment. Int. J. Mol. Sci. 2018, 19, 2127.

Journal reference: Int. J. Mol. Sci. 2018, 19, 2127
DOI: 10.3390/ijms19072127

Abstract

Stroke remains a major cause of death and disability in the United States and around the world. Solid safety and efficacy profiles of novel stroke therapeutics have been generated in the laboratory, but most failed in clinical trials. Investigations into the pathology and treatment of the disease remain a key research endeavor in advancing scientific understanding and clinical applications. In particular, cell-based regenerative medicine, specifically stem cells transplantation, may hold promise as stroke therapy because grafted cells and their components may recapitulate the growth and function of the neurovascular unit, which arguably represents the alpha and omega of stroke brain pathology and recovery. Recent evidence has implicated mitochondria, organelles with a central role in energy metabolism and stress response, in stroke progression. Recognizing that stem cells offer a source of healthy mitochondria, potentially transferrable into ischemic cells, may provide a new therapeutic tool. To this end, deciphering cellular and molecular processes underlying dysfunctional mitochondria may reveal innovative strategies for stroke therapy. Here, we review recent studies capturing the intimate participation of mitochondrial impairment in stroke pathology, and showcase promising methods of healthy mitochondria transfer into ischemic cells, to critically evaluate the potential of mitochondria-based stem cell therapy for stroke.

Subject Areas

cerebral ischemia, blood brain barrier, endothelial cells, impaired mitochondria, neurovascular unit, regenerative medicine, stem cell therapy, transfer of healthy mitochondria, vasculature

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.