Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

An Automated IoT Visualization BIM Platform for Decision Support in Facilities Management

Version 1 : Received: 24 May 2018 / Approved: 25 May 2018 / Online: 25 May 2018 (12:29:54 CEST)

A peer-reviewed article of this Preprint also exists.

Chang, K.-M.; Dzeng, R.-J.; Wu, Y.-J. An Automated IoT Visualization BIM Platform for Decision Support in Facilities Management. Appl. Sci. 2018, 8, 1086. Chang, K.-M.; Dzeng, R.-J.; Wu, Y.-J. An Automated IoT Visualization BIM Platform for Decision Support in Facilities Management. Appl. Sci. 2018, 8, 1086.

Abstract

Building information modeling (BIM) is the digital representation of physical and functional characteristics (such as geometry, spatial relationship, and geographic information) of a facility to support decisions during its life cycle. BIM has been extended beyond 3D geometrical representations in recent years, and now includes time as a fourth dimension and cost as a fifth dimension, as well as such other applications as virtual reality and augmented reality. The Internet of Things (IoT) has been increasingly applied in various products (smart homes, wearables) to enhance work productivity, living comfort, and entertainment. However, research addressing the integration of these two technologies (BIM and IoT) is still very limited, and has focused exclusively on the automatic transmission of sensor information to BIM models. This paper describes an attempt to represent and visualize sensor data in BIM with multiple perspectives in order to support complex decisions requiring interdisciplinary information. The study uses a university campus as an example and includes several scenarios, such as an auditorium with a dispersed audience and energy saving options for rooms with different functions (mechanical/electric equipment, classrooms, and laboratory). This paper also discusses the design of a common platform allowing communication among sensors with different protocols (Arduino, Raspberry Pi), the use of Dynamo to accept sensor data as input and automatically redraw visualized information in BIM, and how visualization may help in making energy-saving management decisions.

Keywords

building information modeling; industry foundation classes; internet of things; smart campus; environmental sensors; Dynamo

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.