Preprint
Article

This version is not peer-reviewed.

Macrophage Biocompatibility of CoCr Wear Particles Produced under Polarization in Physiological Hyaluronic Acid Solution

A peer-reviewed article of this preprint also exists.

Submitted:

15 March 2018

Posted:

16 March 2018

You are already at the latest version

Abstract
Macrophages are cells involved in the primary response to debris derived from wear of implanted CoCr alloys. The biocompatibility of wear particles from a high carbon CoCr alloy produced under polarization in physiological hyaluronic acid (HA) solution was evaluated in J774A.1 mouse macrophages cultures. Polarization was applied to mimic the electrical interactions observed in living tissues. Wear tests were performed in a pin-on-disk tribometer integrating an electrochemical cell in phosphate buffer solution (PBS) and in PBS supplemented with 0.3% HA, physiological synovial fluid concentration, used as lubricant solution. Wear particles produced in 0.3% HA solution showed a higher biocompatibility in J774A.1 macrophages in comparison to those elicited by PBS. A considerable improvement in macrophages biocompatibility in the presence of 0.3 % of HA was further observed by the application of polarization at potentials having current densities typical of injured tissues suggesting that polarization produces an effect on the surface of the metallic material that leads to the production of wear particles that are macrophages biocompatible and less cytotoxic. The results showed the convenience to consider electric interactions together with other particles parameters, as are size and composition, to get a better understanding of the biological effects of the wear products.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated