You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Hard Coating is Because of Oppositely Worked Force-Energy Behaviors of Atoms

Altmetrics

Downloads

2612

Views

2969

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

23 June 2018

Posted:

25 June 2018

Read the latest preprint version here

Alerts
Abstract
Coatings of reliable materials of thickness in few atoms to several microns on a viable substrate is the basic need of society which attend regular attention of scientific community working in various fields. Decorative and protective coatings, transparent and insulating coatings, coatings of medical implants and surgical instruments, coatings for drug delivery and security purposes, ultra-precision machine coatings and coatings of other miscellaneous uses are in routine demand for research and commercial purposes. Different hard coatings develop with significant composition of different nature atoms where their force-energy behaviors when recovering certain transition states provide provision for electron of outer ring belonging to gas atom to react for another clamp of energy knot clamping unfilled state of outer ring belonging to solid atom. Set suitable process conditions regulate switching force-energy behaviors of different nature atoms, which are nearly opposite to the ones originally existing in them. Thus, different nature transition state atoms locate points of developing hard coating between their original ground points as the gaseous nature atoms increase their potential energy as per increasing the gravitational force exerting at electron level while the solid atoms decrease their potential energy as per decreasing the gravitational force exerting at electron level. Ti-atom to Ti-atom binding is taken place under the difference of expansion level of lattice in the just land atom and landed atom where the position of nitrogen atoms becomes nearly at their interstitial site. Thus, different nature transition state atoms accommodate to be deposited at substrate surface positioned in the deposition chamber under suitable set parameters. In random arc-based vapor deposition system, depositing different nature atoms at substrate surface depends on the supplied energy where non-conserved forces are remained engage to keep adherence. On undertaking electron (of gas atom), another clamp of energy knot (of solid atom) is being endorsed by the mutually adjusting expansion-contraction of lattices belonging to two different nature atoms developing structure in the form of hard coating, which is known since antiquity. Different properties and characteristics of hard coatings emerged as per engaged forces under the set conditions of involved energy. The present study sets new trends not only in the field of films and coatings but also in the diversified class of materials, wherever, atoms recall their roles.
Keywords: 
Subject: Chemistry and Materials Science  -   Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated