PreprintArticleVersion 1Preserved in Portico This version is not peer-reviewed
Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought Involves Impaired Coordination of Transcriptomic and Proteomic Response and Regulation of Various Multifunctional Proteins
Rurek, M.; Czołpińska, M.; Pawłowski, T.A.; Staszak, A.M.; Nowak, W.; Krzesiński, W.; Spiżewski, T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int. J. Mol. Sci.2018, 19, 1130.
Rurek, M.; Czołpińska, M.; Pawłowski, T.A.; Staszak, A.M.; Nowak, W.; Krzesiński, W.; Spiżewski, T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int. J. Mol. Sci. 2018, 19, 1130.
Rurek, M.; Czołpińska, M.; Pawłowski, T.A.; Staszak, A.M.; Nowak, W.; Krzesiński, W.; Spiżewski, T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int. J. Mol. Sci.2018, 19, 1130.
Rurek, M.; Czołpińska, M.; Pawłowski, T.A.; Staszak, A.M.; Nowak, W.; Krzesiński, W.; Spiżewski, T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int. J. Mol. Sci. 2018, 19, 1130.
Abstract
The early generative phase of cauliflower (Brassica oleracea var. botrytis) curd ripening is sensitive to the water deficit. Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate the mitochondrial biogenesis of three cauliflower cultivars varying with drought tolerance. Diverse quantitative changes (down-regulations mostly) in the mitochondrial proteome were assayed by 2D PAGE coupled with LC-MS/MS. Respiratory (e.g. CII, CIV and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g. components of RNA editing machinery) appeared diversely affected in their abundance under two drought levels. Western immunoassays showed also cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides found in few 2D spots that appeared immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The level of selected messengers participating in drought response was also determined. We conclude that the mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars and associated with drought tolerance on the proteomic and functional levels. However, transcriptomic and proteomic regulations were largely uncoordinated due to the suggested altered availability of messengers for translation, mRNA/ribosome interactions and/or miRNA impact on transcript abundance and translation.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.