Submitted:

23 January 2018

Posted:

24 January 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Among the plant nutrients potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of plant structure but also plays regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, enzyme activation. There are several physiological processes like stomatal regulation and photosynthesis are dependent on K. In the recent decades K was found to provide abiotic stress tolerance. Under salt stress, K helps in maintaining ion homeostasis and regulation of osmotic balance. Under drought stress condition K regulates the stomatal opening and makes the plants adaptive to water deficit. Many reports provided the notion that K enhances the antioxidant defense in plants and therefore, protects the plants from oxidative stress under various environmental adversities. Also, it provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although a considerable progress in understanding K-induced abiotic stress tolerance in plants has been achieved the exact molecular mechanisms of such protections are still under research. In this review, we summarized the recent literature on the biological functions of K, its uptake, and translocation and its role in plant abiotic stress tolerance.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1751

Views

969

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated