Preprint
Article

This version is not peer-reviewed.

Measuring the Magnetic Flux Density with Flux Loops and Hall Probes in the CMS Magnet Flux Return Yoke

A peer-reviewed article of this preprint also exists.

Submitted:

12 December 2017

Posted:

12 December 2017

You are already at the latest version

Abstract
The direct measurements of the magnetic flux density in steel blocks within Compact Muon Solenoid (CMS) magnet yoke are performed with 22 flux loops installed in selected regions of the yoke. The 10,000-ton CMS magnet flux return yoke encloses a 4 T superconducting solenoid with a 6-m-diameter by 12.5-m-length free bore and consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end. The yoke steel blocks, mostly up to 620 mm thick, serve as the absorber plates of the muon detection system. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside of the tracking volume which was measured with a field-mapping machine. In the present study, for the first time, the reliable reconstruction of the magnetic flux density in the steel blocks of the yoke is performed using the CMS magnet standard discharges from the operational magnet current of 18.164 kA. To provide this reconstruction, the voltages induced in the flux loops (with amplitudes of 20–250 mV) have been measured with six 16-bit DAQ modules and integrated offline over time. The results of the flux loop measurements during three magnet ramp downs are presented and discussed.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated