Preprint Article Version 1 This version is not peer-reviewed

A Marine Fibrinolytic Compound FGFC1 Stimulating Enzymatic Kinetic Parameters of a Reciprocal Activation System Based on a Single Chain Urokinase-Type Plasminogen Activator and Plasminogen

Version 1 : Received: 28 September 2017 / Approved: 28 September 2017 / Online: 28 September 2017 (09:17:34 CEST)

How to cite: Ruihua, G.; Dong, D.; Hong, S.; Zhou, Y.; Wang , F..; Wang, S.; Wu, W.; Bao, B. A Marine Fibrinolytic Compound FGFC1 Stimulating Enzymatic Kinetic Parameters of a Reciprocal Activation System Based on a Single Chain Urokinase-Type Plasminogen Activator and Plasminogen. Preprints 2017, 2017090143 (doi: 10.20944/preprints201709.0143.v1). Ruihua, G.; Dong, D.; Hong, S.; Zhou, Y.; Wang , F..; Wang, S.; Wu, W.; Bao, B. A Marine Fibrinolytic Compound FGFC1 Stimulating Enzymatic Kinetic Parameters of a Reciprocal Activation System Based on a Single Chain Urokinase-Type Plasminogen Activator and Plasminogen. Preprints 2017, 2017090143 (doi: 10.20944/preprints201709.0143.v1).

Abstract

A marine fibrinolytic compound FGFC1 enhancing fibrinolysis was obtained involving in enzymatic kinetic parameters of reciprocal activation system with single chain urokinase type plasminogen activator and plasminogen. FGFC1, a kind of bisindole alkaloid from a metabolite of rare marine fungi Starchbotrys longispora FG216, modulated enzymatic kinetic parameters including fibrinolytic reaction rate and fibrin degradation characteristics. The enzymatic kinetics of fibrinolysis was described based on enzymatic reaction of chromogenic-substrate associated with p-nitroaniline (p-NA). While single chain urokinase-type plasminogen activator (pro-uPA) actived plasminogen, Kcat and kcat/km increased significantly with increase of FGFC1 concentration. Moreover, Kcat and kcat/km exhibited 26.5-fold and 22.8-fold enhanced activity at the concentration of 40 μg•mL−1 of FGFC1, respectively. The results suggested that FGFC1 improved significantly the maximum catalytic efficiency and the total catalytic activity of fibrinolysis base on the reciprocal activation of pro-uPA and plasminogen. Km increased with increasing FGFC1 concentration, which indicated that FGFC1 decreased slightly the affinity activity of pro-uPA and plasminogen versus enzyme substrate. The marine bisindole alkaloid FGFC1 enhanced fibrinolysis which was taken on enzymatic kinetic characteristics.

Subject Areas

fibrinolytic acticity; FGFC1; plasminogen activator; plasminogen; enzymatic kinetic

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.