Preprint Article Version 1 This version is not peer-reviewed

An Electromagnetically Actuated Double-Sided Cell-Stretching Device for Mechanobiology Research

Version 1 : Received: 22 July 2017 / Approved: 24 July 2017 / Online: 24 July 2017 (10:04:57 CEST)

A peer-reviewed article of this Preprint also exists.

Kamble, H.; Vadivelu, R.; Barton, M.; Boriachek, K.; Munaz, A.; Park, S.; Shiddiky, M.J.A.; Nguyen, N.-T. An Electromagnetically Actuated Double-Sided Cell-Stretching Device for Mechanobiology Research. Micromachines 2017, 8, 256. Kamble, H.; Vadivelu, R.; Barton, M.; Boriachek, K.; Munaz, A.; Park, S.; Shiddiky, M.J.A.; Nguyen, N.-T. An Electromagnetically Actuated Double-Sided Cell-Stretching Device for Mechanobiology Research. Micromachines 2017, 8, 256.

Journal reference: Micromachines 2017, 8, 256
DOI: 10.3390/mi8080256

Abstract

Cellular response to mechanical stimuli is an integral part of cell homeostasis. The interaction of the extracellular matrix with the mechanical stress plays an important role in cytoskeleton organisation and cell alignment. Insights from the response can be utilised to develop cell culture methods that achieve predefined cell patterns, which are critical for tissue remodelling and cell therapy. We report the working principle, design, simulation and characterisation of a novel electromagnetic cell stretching platform based on the double-sided axial stretching approach. The device is capable of introducing a cyclic and static strain pattern on a cell culture. The platform was tested with fibroblasts. The experimental results are consistent with the previously reported cytoskeleton reorganisation and cell reorientation induced by strain. The orientation of the cells is highly influenced by external mechanical cues. Cells reorganise their cytoskeleton to avoid external strain and to maintain intact extracellular matrix arrangements.

Subject Areas

Biomedical Engineering, Cell Stretching, Mechanobiology.

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.