Preprint Review Version 1 This version not peer reviewed

Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals

Version 1 : Received: 23 June 2017 / Approved: 23 June 2017 / Online: 23 June 2017 (03:30:13 CEST)

A peer-reviewed article of this Preprint also exists.

Hemasa, A.L.; Naumovski, N.; Maher, W.A.; Ghanem, A. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals. Nanomaterials 2017, 7, 186. Hemasa, A.L.; Naumovski, N.; Maher, W.A.; Ghanem, A. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals. Nanomaterials 2017, 7, 186.

Journal reference: Nanomaterials 2017, 7, 186
DOI: 10.3390/nano7070186

Abstract

Carbon nanotubes (CNTs) possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral SWCNTs and MWCNTs have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and gas chromatography (GC). Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas, non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns.

Subject Areas

carbon nanotubes; chiral separation; achiral separation; SWCNTs; MWCNTs

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.