The accelerated expansion of the universe is of great scientific interest. It is attributed to Dark Energy. We present a quantum theory of space,and a thermodynamic approach to modeling the evolution of the universe, that explain it. Space is a dynamical entity made up of energy quanta. From wave particle duality, they can also be considered as a gas. The universe evolved starting from a point size volume of gas at very high temperature and pressure. Upon expansion and cooling, phase transitions occured resulting in the formation of fundamental particles, radiation, and matter; these nucleate and grow into stars, galaxies, and clusters. From a phase diagram of cosmic composition , we obtained a correlation between dark energy and the energy of space. A repulsive space force causes the expansion of the universe; the space quanta arise from a space field. Using the Friedmann equations, data on the composition of the universe at 3.0 x 105 (a=5.25 x 10−2) years and at present (a=l), obtained from WMAP studies, are well fitted by our model with an equation of state parameter, w= −0.7. The accelerated expansion of the universe, starting at about 7 billion years, determined by BOSS measurements, correlates well with the dominance of dark energy at 7.25 x 109 years ( a= 0.65). The expansion is attributed to Quintessence.