Preprint
Article

This version is not peer-reviewed.

Bringing Depth Data Alive: Conceive Human Intention through Web Visualisations of Head Pose and Emotion Changes

  † This paper is an extended version of our paper published in 8th Computer Science and Electronic Engineering (CEEC) [1].

A peer-reviewed article of this preprint also exists.

Submitted:

07 July 2017

Posted:

10 July 2017

You are already at the latest version

Abstract
Affective computing in general and human activity and intention analysis in particular, is a rapidly growing field of research. Head pose and emotion changes, present serious challenges when applied to player’s training and ludology experience in serious games or analysis of customer satisfaction regarding broadcast and web services or monitoring a driver’s attention. Given the increasing prominence and utility of depth sensors, it is now feasible to perform large-scale collection of three-dimensional (3D) data for subsequent analysis. Discriminative random regression forests was selected in order to rapidly and accurately estimate head pose changes in unconstrained environment. In order to complete the secondary process of recognising four universal dominant facial expressions (happiness, anger, sadness and surprise), emotion recognition via facial expressions (ERFE) was adopted. After that, a lightweight data exchange format (JavaScript Object Notation-JSON) is employed, in order to manipulate the data extracted from the two aforementioned settings. Motivated by the need of generating comprehensible visual representations from different sets of data, in this paper we introduce a system capable of monitoring human activity through head pose and emotion changes, utilising an affordable 3D sensing technology (Microsoft Kinect sensor).
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated