Preprint
Article

Power Balancing Control for Grid Energy Storage System in PV Applications—Real Time Digital Simulation Implementation

Submitted:

19 May 2017

Posted:

22 May 2017

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Grid energy storage system for PV Applications is connected with three different power sources i.e. PV Array, Battery and the Grid. It is advisable to have Isolation between these three different sources to provide safety for the equipment. The configuration proposed in this paper provides the complete isolation between the three sources. A Power Balancing Control (PBC) for this configuration is proposed to operate the system in three different modes of operation. Control of a dual active bridge (DAB) based battery charger which provides a galvanic isolation between batteries and other sources is explained briefly. Various modes of operation of a Grid energy storage system are also presented in this paper. Hardware-In-Loop (HIL) Simulation is carried out to check the performance of the system and the PBC algorithm. Power circuit (comprises of inverter, dual active bridge based battery charger, grid, PV cell, batteries, contactors and switches) is simulated and the controller hardware and user interface panel are connected as HIL with the simulated power circuit through Real Time Digital Simulator (RTDS). HIL simulation results are presented to explain the control operation, steady state performance in different modes of operation and the dynamic response of the system.
Keywords: 
active power control; battery charging; dual active bridge; energy storage system; hardware-in-loop
Subject: 
Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

1267

Views

805

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated