Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Real-time Analysis of a Modified State Observer for Sensorless Induction Motor Drive used in Electric Vehicle Applications

Version 1 : Received: 8 May 2017 / Approved: 9 May 2017 / Online: 9 May 2017 (11:01:45 CEST)

A peer-reviewed article of this Preprint also exists.

Krishna S., M.; Daya J.L., F.; Padmanaban, S.; Mihet-Popa, L. Real-Time Analysis of a Modified State Observer for Sensorless Induction Motor Drive Used in Electric Vehicle Applications. Energies 2017, 10, 1077. Krishna S., M.; Daya J.L., F.; Padmanaban, S.; Mihet-Popa, L. Real-Time Analysis of a Modified State Observer for Sensorless Induction Motor Drive Used in Electric Vehicle Applications. Energies 2017, 10, 1077.

Abstract

The purpose of this work is to present an adaptive sliding mode luenberger state observer with improved disturbance rejection capability and better tracking performance under dynamic conditions. The sliding hyperplane is altered by incorporating the estimated disturbance torque with the stator currents. Also, the effects of parameter detuning on the speed convergence is observed and compared with the conventional disturbance rejection mechanism. The entire drive system is first built in simulink environment. Then, the simulink model is integrated with RT-Lab blocksets and implemented in a relatively new real-time environment using OP4500 real-time simulator. Real-time simulation and testing platforms have succeeded offline simulation and testing tools due to their reduced development time. The real-time results validate the improvement in the proposed state observer and also correspond to the performance of the actual physical model.

Keywords

state estimation; model reference; sliding mode; real-time; parameter detuning

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.