Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Examination of Multi-Spectral Radiance of the Landsat 8 Satellite Data for Estimating Biomass Carbon Stock at Wetland Ecosystem

Version 1 : Received: 3 April 2017 / Approved: 4 April 2017 / Online: 4 April 2017 (10:02:56 CEST)

How to cite: Risdiyanto, I.; Fakhrul, M. Examination of Multi-Spectral Radiance of the Landsat 8 Satellite Data for Estimating Biomass Carbon Stock at Wetland Ecosystem. Preprints 2017, 2017040020. https://doi.org/10.20944/preprints201704.0020.v1 Risdiyanto, I.; Fakhrul, M. Examination of Multi-Spectral Radiance of the Landsat 8 Satellite Data for Estimating Biomass Carbon Stock at Wetland Ecosystem. Preprints 2017, 2017040020. https://doi.org/10.20944/preprints201704.0020.v1

Abstract

The assessment of biomass carbon stocks was conducted at plot scale as a sample to estimate for all vegetation areas by using destructive sampling and or allometric equation method. Remote sensing is one of the techniques can be used to estimate and mapping biomass carbon stock for the entire areas. The objectives of the study are the identification and determine the range of electromagnetic wave of Landsat 8 satellite data that most suitable for assessing and mapping biomass carbon stock distribution. This research analyses exponential regression equation between spectral radiance values (Lλi) for with biomass measurement results on the field to find the best correlation based on the coefficient of determination value (R2). It also analyses the relationship between field biomass and NDVI value (Normal Differences Vegetation Index) from satellite data. The study area consists of 54.9% bush (Bs), 24.5% scrub (Sc), 16.8% secondary forest (Sf), while the rest (3.8%) is a water body. The with average biomass carbon stock value 4.11 tons.ha-1, 64.43 tons.ha-1, and 85.36 tons.ha-1, for strata Sc, Bs, and Sf respectively. Spectral radiance of SWIR (Shortwave Infra-Red) band 6 is determined as a spectral characteristic that can be used to estimating carbon stock with following the equation Y= 12657(EXP(-0.642(Lλband6)) with r2 = 0.75. Correlation NDVI and field biomass showed the low r2 value (0.08), so in this study, NDVI cannot be used to estimate the biomass carbon stock.

Keywords

biomass, carbon stock, wetland, spectral radiance, SWIR

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.