Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Evolutionary Optimization of Colebrook’s Turbulent Flow Friction Approximations

Version 1 : Received: 1 March 2017 / Approved: 2 March 2017 / Online: 2 March 2017 (07:57:54 CET)

A peer-reviewed article of this Preprint also exists.

Brkić, D.; Ćojbašić, Ž. Evolutionary Optimization of Colebrook’s Turbulent Flow Friction Approximations. Fluids 2017, 2, 15. Brkić, D.; Ćojbašić, Ž. Evolutionary Optimization of Colebrook’s Turbulent Flow Friction Approximations. Fluids 2017, 2, 15.

Abstract

Today, Colebrook’s equation is mostly accepted as an informal standard for modeling of turbulent flow in hydraulically smooth and rough pipes including transient zone in between. The empirical Colebrook’s equation relates the unknown flow friction factor (λ) with the known Reynolds number (R) and the known relative roughness of inner pipe surface (ε/D). It is implicit in unknown friction factor (λ). Implicit Colebrook’s equation cannot be rearranged to derive friction factor (λ) directly and therefore it can be solved only iteratively [λ=f(λ, R, ε/D)] or using its explicit approximations [λ≈f(R, ε/D)]. Of course, approximations carry in certain error compared with the iterative solution where the highest level of accuracy can be reached after enough number of iterations. The explicit approximations give a relatively good prediction of the friction factor (λ) and can reproduce accurately Colebrook’s equation and its Moody’s plot. Usually, more complex models of approximations are more accurate and vice versa. In this paper, numerical values of parameters in various existing approximations are changed (optimized) using genetic algorithms to reduce maximal relative error. After this improvement computational burden stays unchanged while accuracy of approximations increases in some of the cases very significantly.

Keywords

colebrook equation; colebrook-white; moody diagram; turbulent flow; hydraulic resistance; darcy friction; pipes; genetic algorithms; optimization techniques; error analysis

Subject

Physical Sciences, Fluids and Plasmas Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.