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Abstract: Today, Colebrook’s equation is mostly accepted as an informal standard for modeling of 
turbulent flow in hydraulically smooth and rough pipes including transient zone in between. The 
empirical Colebrook’s equation relates the unknown flow friction factor (λ) with the known 
Reynolds number (R) and the known relative roughness of inner pipe surface (ε/D). It is implicit in 
unknown friction factor (λ). Implicit Colebrook’s equation cannot be rearranged to derive friction 
factor (λ) directly and therefore it can be solved only iteratively [λ=f(λ, R, ε/D)] or using its explicit 
approximations [λ≈f(R, ε/D)]. Of course, approximations carry in certain error compared with the 
iterative solution where the highest level of accuracy can be reached after enough number of 
iterations. The explicit approximations give a relatively good prediction of the friction factor (λ) 
and can reproduce accurately Colebrook’s equation and its Moody’s plot. Usually, more complex 
models of approximations are more accurate and vice versa. In this paper, numerical values of 
parameters in various existing approximations are changed (optimized) using genetic algorithms 
to reduce maximal relative error. After this improvement computational burden stays unchanged 
while accuracy of approximations increases in some of the cases very significantly. 

Keywords: colebrook equation; colebrook-white; moody diagram; turbulent flow; hydraulic 
resistance; darcy friction; pipes; genetic algorithms; optimization techniques; error analysis 

 

1. Introduction 

In this paper more accurate explicit approximations of Colebrook’s equation are presented. The 
Colebrook equation (1) relates hydraulic flow friction (λ) through Reynolds number (R) and relative 
roughness (ε/D) of inner pipe surface but in implicit way; λ=f(λ, R, ε/D) [1-18]. On the other hand, to 
express flow friction (λ) in implicit way a number of approximations can be used [19-44]. Accuracy 
of the approximations was increased using genetic algorithms [45-52] and results are presented here. 

The Colebrook equation is empirical and hence its accuracy can be disputed. The friction factor 
curves derived from the Colebrook equation are said to be monotonic, i.e. the friction factor (λ) 
decreases continuously with increasing Reynolds number (R). Despite of that in some tests carried 
out on pipes that were artificially roughened with grains of sand the curves were inflectional in 
nature, i.e. the friction factor (λ) decreases to a minimum value with increasing Reynolds number (R) 
and then rises again to reach a constant value for complete turbulence [53,54], the Colebrook 
equation is still accepted in engineering practice as sufficiently accurate. It is still widely used in 
petroleum, mining, mechanical, civil and in all branches of engineering which deals with fluid flow. 

Hydraulic resistance. Hydraulic resistance in general depends on flow rate [53-59]. To make 
things even more complex, hydraulic resistance is usually expressed through flow friction factor 
such as Darcy’s (λ) where further pressure drop and flow rate is correlated with the well-known 
formula by Darcy and Weisbach. In the non-linear Darcy-Weisbach law for pipe flow, Darcy’s 
friction factor (λ) is variable and always depends on flow. This assumption stands also if Fanning’s 
friction is in use since its physical meaning is equal with Darcy’s friction (λ). Darcy’s friction factor, 
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known also under the names of Moody or Darcy-Weisbach, is 4 times greater than Fanning’s friction 
factor. 

Colebrook Equation. To be more complex, widely used empirical and nonlinear Colebrook’s 
equation (1) for calculation of Darcy’s friction factor (λ) is iterative i.e. implicit in fluid flow friction 
factor since the unknown friction factor appears on the both sides of the equation [λ0=f(λ0, R, ε/D)] 
[2]. This unknown friction factor (λ) cannot be extracted to be on the left side of the equal sign 
analytically, i.e. with no use of some kind of mathematical simplifications. Better to say, it can be 
expressed explicitly only if approximate calculus takes place. 
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λ0 denotes high precision iterative solution of Colebrook’s equation which is treated here as 
accurate, R denotes the Reynolds number while ε/D denotes relative roughness of inner pipe 
surfaces. All three mentioned values are dimensionless. 

The Colebrook equation is somewhere known as the Colebrook-White equation or simply the 
CW equation [1,2]. This equation is valuable for determination of hydraulic resistances for turbulent 
regime in smooth and rough pipes including turbulent zone between them, but it is not valid for 
laminar regime. It describes a monotonic change in the friction factor (λ) during the turbulent flow 
in commercial pipes from smooth to fully rough. Moody’s and Rouse’s charts [3,4] represent the 
plots of the Colebrook equation over a very wide range of the Reynolds number (R from 2320 to 108) 
and relative roughness values (ε/D from 0 to 0.05). Beside of some of its shortcomings [54], today, 
Colebrook’s equation is accepted as the informal standard of accuracy for calculation of hydraulic 
friction factor (λ).  

Accuracy. As already noted, the Colebrook equation is empirical and therefore its accuracy can 
be disputed; equal sign ‘=’ in ‘λ0=f(λ0, R, ε/D)’, i.e. in Eq. (1) instead of approximately equal sign “≈” 
can be treated as accurate only conditionally [48]. In this paper, iterative solution of Colebrook’s 
equation (λ0) after enough number of iterations will be treated as accurate and will be used for 
comparison as standard of accuracy where accuracy of friction factor (λ) calculated using the shown 
approximations will be compared with it. 

Lambert W-function. The Colebrook equation can be rearranged in explicit form only 
approximately [λ≈f(R, ε/D)] where approach with the Lambert W-function can be treated as partial 
exemption from this rule [6-8,60-62], but also, further evaluation of the Lambert W-function function 
is approximate. 

Looped Network of Pipes. The use of the accurate explicit approximations should be 
prioritized over the use of iterative solution in calculation of looped networks of pipes since in that 
way double iterative procedures, one for the Colebrook equation and one for the solution of the 
whole looped system of pipes, can be avoided [63-67]. 

Goal of the Study. The goal is to increase accuracy of already available explicit approximation 
of Colebrook’s equation. This is accomplished using genetic algorithms. 

2. Genetic algorithm optimization technique 

Methodology. Genetic algorithms are one of the evolutionary computational intelligence 
techniques [45,46], inspired by Darwin’s theory of biological evolution. Genetic algorithms provide 
solutions using randomly generated strings (chromosomes) for different types of problems, 
searching the most suitable among chromosomes that make the population in the potential solutions 
space. Genetic optimization is an alternative to the traditional optimal search approaches which 
make difficult finding the global optimum for nonlinear and multimodal optimization problems. 
Thus, genetic algorithms have been successful for example in solving combinatorial problems, 
control applications of parameter identification and control structure design, as well as in many 
other areas [47-52]. 

Used Optimization Approach. Here, genetic algorithms approach has been implemented to 
optimize parameters of available approximations of the Colebrook equation for hydraulic friction 
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factor determination in order to improve their accuracy at the same time retaining previous 
complexity and computational burden of approximations. Small letters in the equations through 
paper corresponds to the numerical values before while capital letters to the numerical values after 
optimization through genetic algorithms as it is picturesquely presented in Figure 1. 

 
Figure 1. Picturesquely shown optimization using genetic algorithms 

Genetic algorithms are very powerful tool for optimization. Samadianfard [47] uses genetic 
programming, a sort of genetic algorithms, to develop his own explicit approximations to the 
Colebrook equation. Also genetic algorithms can be used together with some other techniques of 
artificial intelligence such as neural networks [50-52]. 

Real coded genetic algorithms are used in this paper. The real coded genetic algorithms use the 
optimization designed cost function that minimizes maximal relative error, δmax as follow (2): 
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In (2), δ denotes relative (percentage) error, λ0 denotes high precision iterative solution of 
Colebrook’s equation which is treated as accurate here, λ denotes hydraulic friction factor solution 
calculated by each approximation considered, and n denotes number of pairs of λ0 and λ used for 
optimization (in our case n=90,000).  

Fitness function was evaluated in large number of 90 thousand points uniformly distributed in 
domains of the Reynolds number (R) and the relative roughness (ε/D). Subject of genetic 
optimization are coefficients in approximations, i.e. numeric coefficients in each approximation were 
changed by genetic algorithms in order to minimize the fitness function (2). In that way 
approximations are changed in order to match accuracy of iterative solution of Colebrook’s equation 
as close as possible. Simultaneous optimization of all coefficients in each approximation was 
attempted, while the range of values of parameters in which optimal solutions were searched always 
in arbitrary neighborhood of initial values. Here we chose to present the results obtained with fitness 
function (2) in order to reduce maximal error of each approximation as much as possible (assumed 
that the reduction of the maximal relative error is of the highest importance for practical use of 
approximations). Genetic algorithms performance depends on its parameter values, so genetic 
algorithm parameters were carefully selected by conducting numerous experiments. In the 
implemented algorithm real-coded population of 100 individuals, an elitism of 10 individuals, and a 
scattered crossover function were used. All the members were subjected to adaptive feasible 
mutation except for the elite. The individuals were randomly selected by the Roulette method. 
Optimization with genetic algorithms was carried out in MATLAB by MathWorks. Practical domain 
of the Reynolds number (R) and relative roughness of inner pipe surface (ε/D) is coved by mesh of 
n=90,000 points for this optimization. In these 90 thousand points, iterative solution of the implicitly 
given Colebrook equation, λ0 and non-iterative solution for every single observed approximation, λ, 
were calculated. The optimization of every single approximation lasts several hours. All evaluations 
of error were performed in MATLAB, with further confirmations in MS Excel to maintain full 
comparability with the study of Brkić [10] (For use of iterative calculus in MS Excel ver. 2007 see 
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Brkić [11]; in Brkić and Tanasković [68], MS Excel is also used for other extensive but non-iterative 
calculations). Mesh in MS Excel over the practical domain of the Reynolds number (R) and relative 
roughness of inner pipe surface (ε/D) consists of n=740 uniformly distributed points. 

Alternative Opptimization Approaches. The main goal of the optimization in our case is to 
reduce the maximal error (δmax) of the every single observed approximation. This means, that 
sometimes the average (mean) relative error in the practical range of the Reynolds number (R) and 
the relative roughness of inner pipe surface (ε/D) increases compared to the model of the observed 
approximation with initial, non-optimized values of parameters. Of course, as it will be shown using 
genetic algorithm optimization with function defined to reduce maximal error, this error will be 
reduced more or less efficiently, which at the same time does not mean that average error will 
necessarily increased or decreased. Although the minimization of average error is not set as a goal 
by (2), it can be reduced also during the optimization. Instead of here already shown fitness function 
(2), it can be redefined to simultaneously reduce average and maximal error (3). In that way, both 
errors, i.e. maximal relative error and average (mean) relative error will be reduced simultaneously 
for sure. This requires more one-off computational efforts compared with the approach in which 
only one type of error is reduced; in our case this will be maximal relative error, δmax while fitness 
function is defined by (2). In (3), the first term reduces average (mean) relative error δavr, the second 
term reduces maximal error δ, while weights k1 and k2 can be used to signify one of the terms and 
reduce influence of other. In that case compromise between reduction of maximal and average 
relative error is obtained.  
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Also, fitness function can be set to reduce simultaneously mean square error δMSE and maximal 
relative error δ, as in (4). As already noted for (3), ratio between weight coefficients k3 and k4, 
determines influence of mean square error δMSE and maximal relative error δ in optimization. 
According to many different criterions, values of coefficients in existing explicit approximation to 
the Colebrook equation can be used. Using a lot computational resources, all three errors shown in 
our paper can be simultaneously reduced (5), but such procedure seems to be quite elusive. 
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3. Explicit approximations of Colebrook’s equation 

Colebrook's equation (1) [2] suffers from being implicit in unknown friction factor (λ). It 
requires an iterative solution where convergence to the final accuracy of the observed 
approximation typically requires less than 7 iterations. As Brkić [10] proposed, we use here even few 
thousand iterations to be sure that sufficient value of accuracy for friction factor, λ0, is reached.  

As we already stated, implicit Colebrook’s equation cannot be rearranged to derive friction 
factor directly in one step while iterative calculus can cause problem in simulation of flow in a pipe 
system in which it may be necessary to evaluate friction factor hundreds or thousands of times. This 
is the main reason for attempting to develop a relationship that is a reasonable and as possible 
accurate approximation for the Colebrook equation but which is explicit in friction factor. These 
approximations will be used for calculation of friction factor (λ), which will be compared with very 
accurate solution (λ0) calculated using iterative procedure. 

In this paper, 25 approximations will be optimized: Brkić [19, 20], Fang et al. [21], Ghanbari et 
al. [22], Papaevangelou et al. [23], Avci and Karagoz [24], Buzzelli [25], Sonnad and Goudar [26], 
Romeo et al. [27], Manadilli [28], Chen J.J.J. [29], Serghides [30], Haaland [31], Zigrang and Sylvester 
[32], Barr [33], Round [34], Shacham (available from [35]), Chen [36], Swamee and Jain [37], Eck [38], 
Wood [39] and, Moody [40]. Ćojbašić and Brkić [42] already optimized numerical values of 
parameters by Romeo et al. [27] and by Serghides [30]. 

Accuracy of existing approximations of Colebrook’s equation was thoroughly checked by many 
researchers [10-16]. Yıldırım [14] conducted comprehensive analysis of existing correlations for 
single-phase friction but he used Techdig 2.0 software to read date from the Moody diagram which 
caused remarkable reading error. One must be always aware that the Moody diagram [3] was 
constructed using Colebrook’s equation [2] and not opposite. After all, main conclusion of all papers 
[10-16] is that the relative error, δ, is non–uniformly distributed over the domain of the Reynolds 
number (R) and the relative roughness (ε/D). 

The relative error δ is defined in (2-4) of this paper, the average (mean) relative error δavr in (3) 
and the mean square error δMSE in (4). All three types of error will be used in further text for 
estimation of accuracy of the examined explicit approximations of the Colebrook equation, but 
accent will be on minimization of the maximal relative error, δmax. 

Using shown genetic algorithm optimization technique, the values of existing parameters of the 
explicit approximations are improved compared to the iterative solution of Colebrook’s equation. 
This means that the error of approximations decreases while computational burden stays 
unchanged. In this section, new parameters are shown and reduction of maximal relative error, δmax 
is estimated. Relative error of the approximations shown in further text of this paper are calculated 
as δ=[(λ-λ0)/λ0]·100%, where λ is the Darcy friction factor calculated using the observed 
approximation while λ0 is the iterative solution of Colebrook’s equation which can be used as 
accurate after enough number of iterations (here set to the maximal available number of iterations in 
MS Excel which is 32767 as explained in [10]).  

Every of 25 observed approximations is supplied with three diagrams; first is distribution of the 
relative error over the practical domain of applicability in engineering practice; second is same as the 
first but with the relative error distribution after optimization; and third is comparative diagram. For 
the first two mentioned diagrams, entire practical domain of the Reynolds number (R) and the 
relative roughness of inner pipe surface (ε/D) is covered with 740 point-mesh (diagrams produced in 
MS Excel). For the first two Figures with approximations, same pace of error is used for 
non-optimized and for optimized approximation, to provide more easily comparison with 
exceptions of Appr. 10, Appr. 11 and Appr. 14, where the optimization was extremely successfully 
performed. Mesh of 740 points is formed in MS Excel using 20 values of the relative roughness (ε/D) 
[shown in the related Figures] and using 37 values of the Reynolds number (R); from 104 to 105 with 
pace 104, from 105 to 106 with pace 105, from 106 to 107 with pace 106, and from 107 to 108 with pace 107. 

According to Winning and Coole [16], using the value of mean square error δMSE defined in (4), 
all approximation can be classified in four groups (very small error is lower than 10-11, small is 
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between 10-11 and 10-8, medium is between 10-8 and 5·10-6, and large is above 5·10-6). This criterion will 
also be used in further evaluation. 

Regarding accuracy, it should be noted that inner roughness of pipe, ε, cannot be determined 
easily [17], so physical interpretation of the relative roughness of inner pipe surface (ε/D) is not 
subject of this study. 

For genetic algorithm optimization, MATLAB 2010a by MatWorks was used. For this purpose, 
mesh of 90 thousand points over the entire practical domain of the Reynolds number (R) and the 
relative roughness of inner pipe surface (ε/D), is generated. For this 90 thousand pairs of Reynolds 
number (R) and the relative roughness of inner pipe surface (ε/D), friction factor (λ0) is very 
accurately calculated to be used as a pattern during the procedure of optimization. 

Efficiency of computing in computer environment stays unchanged between non-optimized 
and related optimized approximations, since the model of the approximation stays unchanged; i.e. 
number of logarithmic and power expression stays unchanged [9,18]. Only change of integer power 
to non-integer power in some approximation can increase computational burden, but even than not 
significantly. 

In the following Figures 2-51, symbols and zones with green and red colors represent: 
Δδ-decreased level of maximal relative error δmax; 1. Zone of increased relative error δ (red), 2. Zone 
of decreased relative error δ (green). 

 
Brkić approximation [Appr. 1]. Relevant parameters and errors related to Approximation by 

Brkić [19] after and before optimization (6); [Appr. 1], are given in Figures 2-3. 
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Figure 2. Relative error Brkić [Appr. 1; (6)] before and after optimization 

 

δmax: 2.2065% → 1.2868% 

δavr: 0.4125% → 0.8860% 

δMSE: 3.3662·10-8 → 1.3650·10-7 

 

Figure 3. Performed genetic algorithm 
optimization of Brkić [Appr. 1; (6)]  
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Brkić approximation [Appr. 2]. Relevant parameters and errors related to Approximation by 
Brkić [19] after and before optimization (7); [Appr. 2], are given in Figures 4-5. 
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Figure 4. Relative error of Brkić [Appr. 2; Eq. (7)] before and after optimization 

δmax: 3.1560% → 1.2868% 

δavr: 0.8165% → 0.8809% 

δMSE: 7.3959·10-8 → 1.3765·10-7 
 

 
Figure 5. Performed genetic algorithm 
optimization of Brkić [Appr. 2; Eq. (7)]  

Brkić approximation [Appr. 3]. Relevant parameters and errors related to Approximation by 
Brkić [20] after and before optimization (8); [Appr. 3], are given in Figures 6-7. 
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Figure 6. Relative error of Brkić [Appr. 3; Eq. (8)] before and after optimization 

δmax: 2.0715% → 1.3326% 

δavr: 0.3101% → 0.8971% 

δMSE: 2.7622·10-8 → 1.0472·10-7 
 

Figure 7. Performed genetic algorithm 
optimization of Brkić [Appr. 3; Eq. (8)]  
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Brkić approximation [Appr. 4]. Relevant parameters and errors related to Approximation by 
Brkić [20] after and before optimization (9); [Appr. 4], are given in Figures 8-9. 
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Figure 9. Relative error of Brkić [Appr. 4; Eq. (9)] before and after optimization 

 

δmax: 2.0111% → 1.2866% 

δavr: 0.3101% → 0.7115% 

δMSE: 2.7565·10-8 → 1.2750·10-7 
 
Figure 9. Performed genetic algorithm 
optimization of by Brkić [Appr. 4; Eq. (9)]  

Fang et al. approximation [Appr. 5]. Relevant parameters and errors related to Approximation 
by Fang et al. [21] after and before optimization (10); [Appr. 5], are given in Figures 10-11. 
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Figure 10. Relative error of Fang et al. [Appr. 5; Eq. (10)] before and after optimization 

δmax: 0.6167% → 0.5669% 

δavr: 0.3101% → 0.1526% 

δMSE: 2.9324·10-9 → 2.8711·10-9 
 
Figure 11. Performed genetic algorithm optimization 
of Fang et al. [Appr. 5; Eq. (10)]  
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Ghanbari, Farshad and Rieke approximation [Appr. 6]. Relevant parameters and errors 
related to Approximation by Ghanbari et al. [22] after and before optimization (11); [Appr. 6], are 
given in Figures 12-13. 

( )( )( ) ( )( )( )
















+






 ⋅≈

⋅−≈
→
















+






 ⋅≈

⋅−≈
−−−−

858.0967.0

6

2195.2
610

9152.0042.1

6

2169.2
610

629.2
03.7
1

log606.11

731.2
21.7
1

log52.11

RD
A

A

RD
a

a

ε
λ

ε
λ

       (11) 

 
Figure 12. Relative error of Ghanbari et al. [Appr. 6; Eq. (11)] before and after optimization 

δmax: 2.8962% → 2.5947% 

δavr: 0.8028% → 1.2359% 

δMSE: 9.1390·10-7 → 2.2629·10-7 

 

Figure 13. Performed genetic algorithm 
optimization of Ghanbari et al. [Appr. 6; Eq. (11)]  

Papaevangelou, Evangelides and Tzimopoulos approximation [Appr. 7]. Relevant parameters 
and errors related to Approximation by Papaevangelou et al. [23] after and before optimization (12); 
[Appr. 7], are given in Figures 14-15. 
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Figure 14. Relative error of Papaevangelou et al. [Appr. 7; Eq. (12)] before and after optimization 

 

δmax: 0.8248% → 0.7312% 

δavr: 0.2001% → 0.2974% 

δMSE: 1.2984·10-8 → 1.5319·10-8 

Figure 15. Performed genetic algorithm optimization 
of Papaevangelou et al. [Appr. 7; Eq. (12)]  
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Avci and Karagoz approximation [Appr. 8]. Relevant parameters and errors related to 
Approximation by Avci and Karagoz [24] after and before optimization (13); [Appr. 8], are given in 
Figures 16-17. 
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Figure 16. Relative error of Avci and Karagoz [Appr. 8; Eq. (13)] before and after optimization 

δmax: 4.7858% → 3.1259% 

δavr: 1.2521% → 1.8650% 

δMSE: 1.1611·10-6 → 3.1516·10-7 
 

Figure 17. Performed genetic algorithm 
optimization of Avci and Karagoz [Appr. 8; Eq. (13)]  

Buzzelli approximation [Appr. 9]. Relevant parameters and errors related to Approximation 
by Buzzelli [25] after and before optimization (14); [Appr. 9], are given in Figures 18-19. 
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Figure 18. Relative error of Buzzelli [Appr. 9; Eq. (14)] before and after optimization 

δmax: 0.1385% → 0.0797% 

δavr: 0.0526% → 0.0265% 

δMSE: 1.4643·10-9 → 4.2014·10-10 
 

Figure 19. Performed genetic algorithm 
optimization of Buzzelli [Appr. 9; Eq. (14)] 
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Sonnad and Goudar approximation [Appr. 10]. Relevant parameters and errors related to 
Approximation by Sonnad and Goudar [26] after and before optimization (15); [Appr. 10], are given 
in Figures 20-21. Vatankhah and Kouchakzadeh [43,44] changing parameter ɑ11 to A11-0.31 slightly 
change model of Sonnad and Goudar [26]. They used line fitting tool for optimization. We failed 
with further optimization using genetic algorithms. 
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Figure 20. Relative error 
of Sonnad and Goudar [Appr. 
10; Eq. (15)] before and after 
optimization; optimized by 
Vatankhah and Kouchakzadeh 
[43,44] 

δmax: 0.8007% → 0.1473% 

δavr: 0.2167% → 0.0587% 

δMSE: 5.6447·10-9 → 1.5896·10-9 

Figure 21. Performed genetic algorithm optimization of 
Sonnad and Goudar and optimized by Vatankhah and 
Kouchakzadeh [Appr. 10; Eq. (15)]  

Romeo, Royo and Monzón approximation [Appr. 11]. Relevant parameters and errors related 
to Approximation by Romeo et al. [27] after and before optimization (16); [Appr. 11], are given in 
Figures 22-23. This optimization is already shown in the form of preliminary note in Ćojbašić and 
Brkić [42]. 
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Figure 22. Relative error 
of Romeo, Royo and Monzón 
[Appr. 11; Eq. (16)] before 
and after optimization; 
optimized by Ćojbašić and 
Brkić [42] 

δmax: 0.1345% → 0.0083% 

δavr: 0.0544% → 0.0037% 

δMSE: 3.4379·10-10 → 4.3087·10-12 

 

Figure 23. Performed genetic algorithm 
optimization of Romeo et al. [Appr. 11; Eq. (16)]  
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Manadilli approximation [Appr. 12]. Relevant parameters and errors related to Approximation 
by Manadilli [28] after and before optimization (17); [Appr. 12], are given in Figures 24-25. 
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Figure 24. Relative error of Manadilli [Appr. 12; Eq. (17)] before and after optimization 

δmax: 2.0651% → 1.5018% 

δavr: 0.3716% → 0.5956% 

δMSE: 3.4483·10-8 → 7.2942·10-8 
 
 

Figure 25. Performed genetic algorithm 
optimization of Manadilli [Appr. 12; Eq. (17)]  

Chen J.J.J. approximation [Appr. 13]. Relevant parameters and errors related to 
Approximation by Chen [29] after and before optimization (18); [Appr. 13], are given in Figures 
26-27. 
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Figure 26. Relative error of Chen J.J.J. [Appr. 13; Eq. (18)] before and after optimization 

δmax: 27.5074% → 18.4800% 

δavr: 7.4537% → 10.8465% 

δMSE: 1.0188·10-5 → 1.0171·10-5 
 

Figure 27. Performed genetic algorithm 
optimization of Chen J.J.J. [Appr. 13; Eq. (18)]  
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Serghides approximation [Appr. 14]. Relevant parameters and errors related to Approximation 
by Serghides [30] after and before optimization (19); [Appr. 14], are given in Figures 28-29. This 
optimization is already shown in the form of preliminary note in Ćojbašić and Brkić [42]. 
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Figure 28. Relative error of Serghides [Appr. 14; Eq. (19)] before and after optimization; optimized by 

Ćojbašić and Brkić [42] 

δmax: 0.1385% → 0.0026% 

δavr: 0.508% → 0.0004% 

δMSE: 1.4487·10-9 → 2.4495·10-14 
 

Figure 29. Performed genetic algorithm 
optimization of Serghides [Appr. 14; Eq. (19)]  

Serghides approximation (simpler) [Appr. 15]. Relevant parameters and errors related to 
Approximation by Serghides -simpler [30] after and before optimization (20); [Appr. 15], are given in 
Figures 30-31. 
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Figure 30. Relative error of simpler version of Serghides [Appr. 15; Eq. (20)] before and after optimization 

δmax: 0.3543% → 0.2739% 

δavr: 0.1036% → 0.0354% 

δMSE: 1.7284·10-9 → 9.9360·10-11 
 

Figure 31. Performed genetic algorithm optimization of 
the simpler version of Serghides [Appr. 15; Eq. (20)] 
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Haaland approximation [Appr. 16]. Relevant parameters and errors related to Approximation 
by Haaland [31] after and before optimization (21); [Appr. 16], are given in Figures 32-33. 
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Figure 32. Relative error of Haaland [Appr. 16; Eq. (21)] before and after optimization 

 

δmax: 1.4083% → 1.1098% 

δavr: 0.4657% → 0.6167% 

δMSE: 2.2249·10-8 → 4.5480·10-8 
 

Figure 33. Performed genetic algorithm 
optimization of Haaland [Appr. 16; Eq. (21)] 

Zigrang and Sylvester approximation [Appr. 17]. Relevant parameters and errors related to 
Approximation by Zigrang and Sylvester [32] after and before optimization (22); [Appr. 17], are 
given in Figures 34-35. 
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Figure 34. Relative error of Zigrang and Sylvester [Appr. 17; Eq. (22)] before and after optimization 

δmax: 0.1385% → 0.0831% 

δavr: 0.0696% → 0.0521% 

δMSE: 1.5148·10-10 → 1.6359·10-10 
 

Figure 35. Performed genetic algorithm 
optimization of Zigrang and Sylvester [Appr. 17; Eq. (22)] 
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Zigrang and Sylvester approximation (simpler) [Appr. 18]. Relevant parameters and errors 
related to Approximation by Zigrang and Sylvester -simpler [32] after and before optimization (23); 
[Appr. 18], are given in Figures 36-37. 
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Figure 36. Relative error of simpler version of Zigrang and Sylvester [Appr. 18; Eq. (23)] before and after 

optimization 

δmax: 1.0075% → 0.7496% 

δavr: 0.2967% → 0.1845% 

δMSE: 6.9576·10-9 → 2.0703·10-9 
 

Figure 37. Performed genetic algorithm optimization of the 
simpler version of Zigrang and Sylvester [Appr. 18; Eq. (23)] 

Barr approximation [Appr. 19]. Relevant parameters and errors related to Approximation by 
Barr [33] after and before optimization (24); [Appr. 19], are given in Figures 38-39. 
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Figure 38. Relative error of Barr [Appr. 19; Eq. (24)] before and after optimization 

 

δmax: 0.2774% → 0.2644% 

δavr: 0.0548% → 0.1137% 

δMSE: 1.1399·10-9 → 2.9212·10-9 
 

Figure 39. Performed genetic algorithm 
optimization of Barr [Appr. 19; Eq. (24)]  
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Round approximation [Appr. 20]. Relevant parameters and errors related to Approximation by 
Round [34] after and before optimization (25); [Appr. 20], are given in Figures 40-41. 
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Figure 40. Relative error of Round [Appr. 20; Eq. (25)] before and after optimization 

δmax: 10.9183% → 5.5094% 

δavr: 4.0149% → 2.6418% 

δMSE: 6.8724·10-6 → 8.7303·10-7 
 

Figure 41. Performed genetic algorithm 
optimization of Barr [Appr. 20; Eq. (25)]  

Chen approximation [Appr. 21]. Relevant parameters and errors related to Approximation by 
Chen [36] after and before optimization (26); [Appr. 21], are given in Figures 42-43. 
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Figure 42. Relative error of Chen [Appr. 21; Eq. (26)] before and after optimization 

δmax: 0.3649% → 0.1851% 

δavr: 0.1229% → 0.0808% 

δMSE: 1.0862·10-9 → 5.2494·10-10 
 

Figure 43. Performed genetic algorithm 
optimization of Chen [Appr. 21; Eq. (26)]  
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Swamee and Jain approximation [Appr. 22]. Relevant parameters and errors related to 
Approximation by Swamee and Jain [37] after and before optimization (27); [Appr. 22], are given in 
Figures 44-45. 
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Figure 44. Relative error of Swamee and Jain [Appr. 22; Eq. (27)] before and after optimization 

 

δmax: 2.1872% → 1.7535% 

δavr: 0.4314% → 0.8932% 

δMSE: 3.3002·10-8 → 1.2769·10-7 
 

Figure 45. Performed genetic algorithm 
optimization of Swamee and Jain [Appr. 22; Eq. (27)]  

Eck approximation [Appr. 23]. Relevant parameters and errors related to Approximation by 
Eck [38] after and before optimization (28); [Appr. 23], are given in Figures 46-47. 
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Figure 46. Relative error of Eck [Appr. 23; Eq. (28)] before and after optimization 

 

δmax: 8.1953% → 5.6955% 

δavr: 1.9256% → 1.6722% 

δMSE: 1.18706·10-7 → 1.5222·10-7 
 

Figure 47. Performed genetic algorithm 
optimization of Eck [Appr. 23; Eq. (28)] 
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Wood approximation [Appr. 24]. Relevant parameters and errors related to Approximation by 
Wood [39] after and before optimization (29); [Appr. 24], are given in Figures 48-49. 
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Figure 48. Relative error of Wood [Appr. 24; Eq. (29)] before and after optimization 

 

δmax: 23.7204% → 16.5910% 

δavr: 3.7011% → 7.2113% 

δMSE: 2.5046·10-6 → 3.8013·10-6 
 

Figure 49. Performed genetic algorithm 
optimization of Wood [Appr. 24; Eq. (29)]  

Moody approximation [Appr. 25]. Relevant parameters and errors related to Approximation 
by Moody [40] after and before optimization (30); [Appr. 25], are given in Figures 50-51. 
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Figure 50. Relative error of Moody [Appr. 25; Eq. (30)] before and after optimization 

δmax: 21.4855% → 18.1024% 

δavr: 4.5795% → 8.3301% 

δMSE: 2.4454·10-5 → 9.9926·10-6 

 
Figure 51. Performed genetic algorithm 

optimization of Moody [Appr. 25; Eq. (30)]  
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4. Conclusions 

Using genetic algorithms in order to increase the accuracy of available approximations of the 
Colebrook equation for flow friction, the numerical values of empirical parameters in 25 existing 
models of approximations were changed while computation burden remains the same. Using the 
value of decreased maximal relative error, Δδ, and change of relative error over the entire domain of 
the Reynolds number (R) and relative roughness of inner pipe surface (ε/D), success of genetic 
optimization is summarized in Table 1. 

Table 1. Maximal relative error of the explicit approximations of the Colebrook-White equation 
before and after genetic optimization 

Approximation No. 
With original 

parameters 

After genetic 

optimization 

Estimation of 

improvement  
Source 

Appr. 11 - Eq. (16) 0.1345% 0.0083% extremely successful Romeo et al. [27,42] 

Appr. 14 - Eq. (19) 0.1385% 0.0026% extremely successful Serghides [30,42] 

Appr. 10 - Eq. (15) 0.8007% 0.1473% successful Sonnad and Goudar [26,43] 

Appr. 2 - Eq. (7) 3.1560% 1.2871% successful Brkić [19] 

Appr. 9 - Eq. (14) 0.1385% 0.0797% successful Buzzelli [25] 

Appr. 15 - Eq. (20) 0.3543% 0.2739% successful Serghides [30] 

Appr. 17 - Eq. (22) 0.1385% 0.0831% successful Zigrang and Sylvester [32] 

Appr. 18 - Eq. (23) 1.0075% 0.7496% successful Zigrang and Sylvester [32] 

Appr. 20 - Eq. (25) 10.9183% 5.5094% successful Round [34] 

Appr. 21 - Eq. (26) 0.3649% 0.1851% successful Chen [36] 

Appr. 1 - Eq. (6) 2.2065% 1.2868% moderately successful Brkić [19] 

Appr. 3 - Eq. (8) 2.0715% 1.3326% moderately successful Brkić [20] 

Appr. 4 - Eq. (9) 2.0111% 1.2866% moderately successful Brkić [20] 

Appr. 12 - Eq. (17) 2.0651% 1.5018% moderately successful Manadilli [28] 

Appr. 13 - Eq. (18) 27.5074% 18.4800% moderately successful Chen J.J.J. [29] 

Appr. 16 - Eq. (21) 1.4083% 1.1098% moderately successful Haaland [31] 

Appr. 22 - Eq. (27) 2.1872% 1.7535% moderately successful Swamee and Jain [37] 

Appr. 23 - Eq. (28) 8.1953% 5.6955% moderately successful Eck [21] 

Appr. 5 - Eq. (10) 0.6167% 0.5669%. not very successful Fang et al. [38] 

Appr. 6 - Eq. (11) 2.8962% 2.5947% not very successful Ghanbari et al. [22] 

Appr. 7 - Eq. (12) 0.8248% 0.7312% not very successful Papaevangelou et al. [23] 

Appr. 8 - Eq. (13) 4.7858% 3.1259% not very successful Avci and Karagoz [24] 

Appr. 19 - Eq. (24) 0.2774% 0.2644% not very successful Barr [33] 

Appr. 24 - Eq. (29) 23.7204% 16.5910% not very successful Wood [39] 

Appr. 25 - Eq. (30) 21.4855% 18.1024% not very successful Moody [40] 

 
During this study, it was found that criterion from Winning and Coole [16] about the accuracy 

of approximations using value of mean square error should be modified as: very small error is lower 
than 10-10, small is between 10-10 and 10-8, medium is between 10-8 and 5·10-7, and large is above 5·10-7. 
Criterion of accuracy using value of maximal relative error δmax should be set as: very small error is 
lower than 0.2%, small is between 0.2% and 1%, medium is between 1% and 3%, and large is above 
3% (extremely large above 5%). Also it was found that error distribution, set as a criterion in 
Winning and Coole [16], does not depend only on the model of approximation, but it changes 
equally with change of values of parameters. 
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Aside for the Colebrook equation, the presented methodology can be used to fit with the raw 
and updated measured data, all similar empirical equations which cover the same region of 
turbulent flow [54,55]. 

The results are relevant for all engineering fields which deal with fluid flow through pipes and 
related calculation of hydraulic flow friction. 

Supplementary Materials: Excel and MATLAB codes of the approximations presented in this paper are 
available. 
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