Preprint Article Version 4 Preserved in Portico This version is not peer-reviewed

Revealing Phenomena of Heat Energy, Levity, Gravity and Photons Characteristic Current to Light on Dealing Matter to Sub-Atom

Version 1 : Received: 5 January 2017 / Approved: 5 January 2017 / Online: 5 January 2017 (09:55:07 CET)
Version 2 : Received: 19 January 2017 / Approved: 19 January 2017 / Online: 19 January 2017 (11:05:14 CET)
Version 3 : Received: 13 March 2017 / Approved: 14 March 2017 / Online: 14 March 2017 (07:40:28 CET)
Version 4 : Received: 19 April 2017 / Approved: 19 April 2017 / Online: 19 April 2017 (11:26:33 CEST)
Version 5 : Received: 8 May 2017 / Approved: 8 May 2017 / Online: 8 May 2017 (10:36:08 CEST)
Version 6 : Received: 19 June 2017 / Approved: 20 June 2017 / Online: 20 June 2017 (05:07:01 CEST)
Version 7 : Received: 22 August 2017 / Approved: 22 August 2017 / Online: 22 August 2017 (05:58:38 CEST)
Version 8 : Received: 25 October 2017 / Approved: 25 October 2017 / Online: 25 October 2017 (08:15:34 CEST)
Version 9 : Received: 7 December 2017 / Approved: 8 December 2017 / Online: 8 December 2017 (03:46:45 CET)
Version 10 : Received: 27 December 2017 / Approved: 27 December 2017 / Online: 27 December 2017 (09:21:19 CET)
Version 11 : Received: 17 January 2021 / Approved: 19 January 2021 / Online: 19 January 2021 (10:57:31 CET)
Version 12 : Received: 24 April 2022 / Approved: 25 April 2022 / Online: 25 April 2022 (05:40:32 CEST)
Version 13 : Received: 27 July 2022 / Approved: 27 July 2022 / Online: 27 July 2022 (05:30:24 CEST)
Version 14 : Received: 19 September 2022 / Approved: 20 September 2022 / Online: 20 September 2022 (10:36:29 CEST)
Version 15 : Received: 18 April 2023 / Approved: 19 April 2023 / Online: 19 April 2023 (05:13:30 CEST)
Version 16 : Received: 3 September 2023 / Approved: 4 September 2023 / Online: 5 September 2023 (02:51:01 CEST)
Version 17 : Received: 29 February 2024 / Approved: 1 March 2024 / Online: 1 March 2024 (10:39:41 CET)

How to cite: Ali, M. Revealing Phenomena of Heat Energy, Levity, Gravity and Photons Characteristic Current to Light on Dealing Matter to Sub-Atom. Preprints 2017, 2017010028. https://doi.org/10.20944/preprints201701.0028.v4 Ali, M. Revealing Phenomena of Heat Energy, Levity, Gravity and Photons Characteristic Current to Light on Dealing Matter to Sub-Atom. Preprints 2017, 2017010028. https://doi.org/10.20944/preprints201701.0028.v4

Abstract

Technology is in the way to reaching in its climax but the basic understanding of science in many phenomena is still awaited. Scientific research reveals strong analogy between electron and photon. Atoms that execute suitable electronic transitions, on absorbing heat energy at shunt level, excite their electrons. De-excitation of an electron under the gravitational force of its nucleus, where inertia is involved, results depicting energy in the shape like Gaussian distribution. The wavelength of photon remains in inter-state electron’s gap where the source of generating energy in wave-like fashion is due to electronic transitions under confined electron-dynamics; energy configures under electron’s trajectory in the excitation period is due to inertia-levitation-inertia behaviours while energy configures under electron’s trajectory in the de-excitation period is due to inertia-gravitation-inertia behaviours. Silicon atom is a model system of it. Uninterrupted confined inter-state electron-dynamics results into configure energy in a wave-like fashion that can travel immeasurable length and on interruption from the point of generation, it becomes a photon. Such photons increase wavelength on decreasing energy while travelling through inherently built gap of splitted inert gas atoms where they give light (glow) on reaching wavelength in the visible range. Here, I discuss that heat energy is due to merged photons, photons characteristic current are due to photons having wavelength in inter-state electron’s gap and light is due to photons, following the wavelength in the visible range. Force of repulsion or attraction in certain materials engages the phenomenon of levitism or gravitism where inertia is exempted. All structural motifs and dynamics are subjected to characteristic photons as long as atoms are under neutral behavior of field force. A structural design delivers straight-forward application on dealing photons at different wavelengths. Here, materials science explores matter at electronic level while absorbing heat energy and generating photon energy. Thus, devise science to describe.

Keywords

Heat energy and photon energy; Materials Science; Nanoscale Phenomena; Atomic Scale Phenomena; Sub-Atomic Scale Phenomena

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.