Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Hydrogen Generation from Catalytic Steam Reforming Bio-Oil Model Compound—Acetic Acid Employing Ni/attapulgite Catalysts Prepared with Different Preparation Methods

Version 1 : Received: 27 September 2016 / Approved: 28 September 2016 / Online: 28 September 2016 (10:14:11 CEST)

A peer-reviewed article of this Preprint also exists.

Wang, Y.; Chen, M.; Liang, T.; Yang, Z.; Yang, J.; Liu, S. Hydrogen Generation from Catalytic Steam Reforming of Acetic Acid by Ni/Attapulgite Catalysts. Catalysts 2016, 6, 172. Wang, Y.; Chen, M.; Liang, T.; Yang, Z.; Yang, J.; Liu, S. Hydrogen Generation from Catalytic Steam Reforming of Acetic Acid by Ni/Attapulgite Catalysts. Catalysts 2016, 6, 172.

Abstract

In this research, catalytic steam reforming acetic acid derived from the aqueous portion of bio-oil for hydrogen production was investigated by using different Ni/ATC (Attapulgite Clay) catalysts prepared by precipitation, impregnation and mechanical blending methods. The fresh and reduced catalysts were characterized by XRD, N2 adsorption-desorption, TEM and H2-TPR. The comprehensive results demonstrated that the interaction between active metallic Ni and ATC carrier was significantly improved in Ni/ATC catalyst prepared by precipitation method, and in which the mean Ni particle size was the smallest (~13 nm) resulted in the highest metal dispersion (7.5%). The catalytic performance of the three catalysts was evaluated through the process of steam reforming of acetic acid in a fixed-bed reactor under atmospheric pressure at two different temperatures, such as 550 ℃ and 650 ℃. Results showed that the Ni/ATC (PM-N/ATC) prepared by precipitation method, achieved the highest H2 yield of ~82% and little lower acetic acid conversion efficiency of ~85% than that (~95%) of Ni/ATC (IM-NATC) prepared by impregnation method. In addition, the deactivation catalysts after reaction for 4 h were analyzed by XRD, TGA-DTG and TEM, which demonstrated that the catalyst deactivation was not caused by the amount of carbon deposition, but owed to the significant agglomeration and sintering of Ni particles in the carrier.

Keywords

hydrogen production; steam reforming; Ni/attapulgite; catalysts deactivation; agglomeration and sintering

Subject

Chemistry and Materials Science, Chemical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.