Preprint
Article

This version is not peer-reviewed.

Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar

A peer-reviewed article of this preprint also exists.

Submitted:

15 September 2016

Posted:

15 September 2016

Read the latest preprint version here

Abstract
The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities, and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. No conventional Doppler only can capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantages of impulse radio ultra-wideband (IR-UWB) radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD) and a vital sign separation method based on continuous-wavelet transform (CWT) are proposed jointly to improve the signal-to-noise ratio (SNR) in order to acquire accurate respiration and heartbeat rates. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications. Compared with traditional contact measurement devices, experimental results utilizing a 2.3 GHz bandwidth transceiver, demonstrate 100% similar results.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated