Preprint
Article

This version is not peer-reviewed.

CFD Simulation and Microscopic Study of a Solitary Spherical Porous Adsorbent

Submitted:

02 August 2016

Posted:

03 August 2016

You are already at the latest version

Abstract
Modelling water vapour flow, heat transfer and porosity in porous adsorbent is somewhat challenging simulation problem. Primary macroscopic water vapour flow models, such as Darcy's law, fail to predict the pressure drop entirely correctly for the reason that many of flow parameters not considered because of the simplifications that remain made for the multi-scale structure of the porous adsorbents. For one to develop a good physical understanding of such water vapour flows and the accuracy of existing 3D simulation models, there is a need for some accurate 3D geometry to be studied. This present work describes two-phase water vapour flow and adsorption/ desorption performed on porous adsorbent by a Dynamic vapour sorption (DVS). The CFD simulation results are associated with experiments results. It is decided that for such complex porous adsorbent CFD simulation problems the use of COMSOL Multiphysics and SolidWorks flow simulation will be utilised.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated