Submitted:
12 February 2026
Posted:
12 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Components of the Pilot Plant
2.2.1. Electrolyser
- The initial setup, called 1EA, features four half-moon openings placed side by side to the electrode supports. The lower two openings help in distributing the electrolyte, whereas the upper two openings are meant to aid in releasing the biphasic mixture of electrolyte and gases (oxyhydrogen gas) formed during operation.
- The second configuration, called 2EA, includes four concave structures that run almost all around the electrodes. It operates on the same basic principle as the first design, with lower openings for electrolyte flow and upper openings for gas removal.
- The third configuration, called 3EA, features a modified internal half-moon geometry. In this setup, the electrolyte primarily flows through the lower part of the electrolyser, with only a single half-moon opening at the top to allow the biphasic mixture of electrolyte and gases to escape.
2.2.2. Power Supply
2.2.3. Phase Separator
2.2.4. Purification System
2.2.5. Flowmeter
2.2.6. Characterisation Protocol for Alkaline Electrolysers
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Candra, O.; Chammam, A.; Alvarez, J. R. N.; Muda, I.; Aybar, H. Ş. “The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions”. Sustainability 2023, 15, 2104. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Asadnia, M.; Hossein Karimi, A.; Allahyarzadeh-Bidgoli, A. “How to use renewable energy sources in polygeneration systems?”. In Hybrid Energy Systems Series, Hybrid Poly-Generation Energy Systems; Academic Press, 2024; pp. 11–123. ISBN 9780323983662. [Google Scholar] [CrossRef]
- Qazi, A.; Hussain, F.; ABD. Rahim, N.; Hardaker, G.; Alghazzawi, D.; Shaban, K. “Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions”. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Jayachandran, M.; Kumar Gatla, R.; Flah, A.; H. Milyani, A.; M. Milyani, H.; Blazek, V. “Challenges and Opportunities in Green Hydrogen Adoption for Decarbonizing Hard-to-Abate Industries: A Comprehensive Review”. IEEE Access 2024, 12, 23363–23388. [Google Scholar] [CrossRef]
- Henao, C.; Agbossou, K.; Hammoudi, M.; Dubé, Y.; Cardenas, A. “Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser”. Journal of Power Sources, Volume 2014, 250, Pages 58–67. [Google Scholar] [CrossRef]
- Gambou, F.; Guilbert, D.; Zasadzinski, M.; Rafaralahy, H. “A Comprehensive Survey of Alkaline Electrolyser Modeling: Electrical Domain and Specific Electrolyte Conductivity”. Energies 2022, 15, 3452. [Google Scholar] [CrossRef]
- Ley de la industria eléctrica 2025. Published in the DIARIO OFICIAL DE LA FEDERACIÓN. 18 March 2025. Available online: https://www.diputados.gob.mx/LeyesBiblio/ref/lse/LSE_orig_18mar25.pdf.
- PRODESEN 2024-2038, SENER. 26 January 2026. Available online: https://www.cenace.gob.mx/Docs/16_MARCOREGULATORIO/Prodecen/20%202024-2038%20Cap%C3%ADtulos%201%20al%206.pdf.
- Iwakura, C.; Inoue, H.; Nohara, S. “Hydrogen–Metal Systems: Electrochemical Reactions (Fundamentals and Applications)”. In Encyclopedia of Materials: Science and Technology; Buschow, K.H. Jürgen, Cahn, Robert W., Flemings, Merton C., Ilschner, Bernhard, Kramer, Edward J., Mahajan, Subhash, Veyssière, Patrick, Eds.; Elsevier, 2001; pp. 3923–3941. ISBN 9780080431529. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, X.; Qiu, J.; Xu, C.; Wang, Y.; Feng, X. “Modeling and Simulation of a Gas-Exhaust Design for Battery Thermal Runaway Propagation in a LiFePO4 Module”. Batteries 2024, 10, 176. [Google Scholar] [CrossRef]
- Silich, S.; Tenorio-Tagle, G. “Gas expulsion versus gas retention in young stellar clusters–II. Effects of cooling and mass segregation”. Monthly Notices of the Royal Astronomical Society 2018, 478, 5112–5122. [Google Scholar] [CrossRef]
- Hammoudi, M.; Henao, C.; Agbossou, K.; Dubé, Y.; Doumbia, M. L. New multi-physics approach for modelling and design of alkaline electrolysers. Int J Hydrogen Energy 2012, 37, 13895–13913. [Google Scholar] [CrossRef]
- Sandeep, K. C.; Kamath, S.; Mistry, K.; Kumar M, A.; Bhattacharya, S.K.; Bhanja, K.; Mohan, S. Experimental studies and modeling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production. Int J Hydrogen Energy 2017, 42, 12094–12103. [Google Scholar] [CrossRef]
- Haug, P.; Koj, M.; Turek, T. Influence of process conditions on gas purity in alkaline water electrolysis. Int J Hydrogen Energy 2017, 42, 9406–9418. [Google Scholar] [CrossRef]
- Soriano Moranchell, F. A.; Sandoval Pineda, J. M.; Hernández Pérez, J. N.; Silva-Rivera, U. S.; Cortes Escobedo, C. A.; González Huerta, R. de G. Electrodes modified with Ni electrodeposition decrease hexavalent chromium generation in an alkaline electrolysis process. Int J Hydrogen Energy 2020, 45, 13683–13692. [Google Scholar] [CrossRef]
- d’Amore-Domenech, R.; Santiago, Ó.; Leo, T. J. Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea. Renewable and Sustainable Energy Reviews 2020, 133, 110166. [Google Scholar] [CrossRef]
- Li, C.; Baek, J. B. The promise of hydrogen production from alkaline anion exchange membrane electrolysers. Nano Energy 2021, 87, 106162. [Google Scholar] [CrossRef]
- Grigoriev, S. A.; Fateev, V. N.; Millet, P. “Alkaline Electrolysers”. In Comprehensive Renewable Energy; Jan 2022; pp. 459–472. ISBN 9780128197349. [Google Scholar] [CrossRef]
- Liu, H.; Shen, W.; Jin, H.; Xu, J.; Xi, P.; Dong, J.; Zheng, Y.; Qiao, S. Z. “High-Performance Alkaline Seawater Electrolysis with Anomalous Chloride Promoted Oxygen Evolution Reaction”. Angew Chem Int Ed Engl. 2023, 62, e202311674. [Google Scholar] [CrossRef]
- Allam, M.; Benaicha, M.; Dakhouche, A. Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis. Int J Hydrogen Energy 2018, 43, 3394–3405. [Google Scholar] [CrossRef]
- Gomez Vidales, A.; Choi, K.; Omanovic, S. “Nickel-cobalt-oxide cathodes for hydrogen production by water electrolysis in acidic and alkaline media”. Int J Hydrogen Energy 2018, 43, 12917–12928. [Google Scholar] [CrossRef]
- Gillespie, M. I.; Kriek, R. J. “Scalable hydrogen production from a mono-circular filter press Divergent Electrode-Flow-Through alkaline electrolysis stack”. J Power Sources 2018, 397, 204–213. [Google Scholar] [CrossRef]
- de Radiguès, Q.; Thunis, G.; Proost, J. “On the use of 3-D electrodes and pulsed voltage for the process intensification of alkaline water electrolysis”. Int J Hydrogen Energy 2019, 44, 29432–29440. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Sekar, K.; Li, R; Zhu, Y.; Xing, R.; Nakata, K.; Fujishima, A. “Hierarchical ZnS@C@MoS2 core-shell nanostructures as efficient hydrogen evolution electrocatalyst for alkaline water electrolysis”. Int J Hydrogen Energy 2019, 44, 25310–25318. [Google Scholar] [CrossRef]
- Jiang, X.G.; Zhang, Y.P.; Song, C.; Xie, Y.C.; Liu, T.K.; Deng, C.M.; Zhang, N.N. “Performance of nickel electrode for alkaline water electrolysis prepared by high pressure cold spray”. Int J Hydrogen Energy 2020, 45, 33007–33015. [Google Scholar] [CrossRef]
- Mutlu, R. N.; Kucukkara, I.; Gizir, A. M. “Hydrogen generation by electrolysis under subcritical water condition and the effect of aluminium anode”. Int J Hydrogen Energy 2020, 45, 12641–12652. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, H.; Gao, B.; Lu, P.; Li, D.; Xing, P. “Ni–Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis”. Int J Hydrogen Energy 2020, 45, 19335–19343. [Google Scholar] [CrossRef]
- Poimenidis, I. A.; Tsanakas, M. D.; Papakosta, N.; Klini, A.; Farsari, M.; Moustaizis, S. D.; Loukakos, P. A. “Enhanced hydrogen production through alkaline electrolysis using laser-nanostructured nickel electrodes”. Int J Hydrogen Energy 2021, 46, 37162–37173. [Google Scholar] [CrossRef]
- Bhavanari, M.; Lee, K. R.; Tseng, C. J.; Tang, I. H.; Chen, H. H. “CuFe electrocatalyst for hydrogen evolution reaction in alkaline electrolysis”. Int J Hydrogen Energy 2021, 46, 35886–35895. [Google Scholar] [CrossRef]
- Horri, B. A.; Choolaei, M.; Chaudhry, A.; Qaalib, H. A highly efficient hydrogen generation electrolysis system using alkaline zinc hydroxide solution. Int J Hydrogen Energy 2019, 44, 72–81. [Google Scholar] [CrossRef]
- Speckmann, F. W.; Bintz, S.; Birke, K. P. “Influence of rectifiers on the energy demand and gas quality of alkaline electrolysis systems in dynamic operation”. Appl Energy 2019, 250, 855–863. [Google Scholar] [CrossRef]
- Purnami, P.; Hamidi, N.; Sasongko, M. N.; Widhiyanuriyawan, D.; Wardana, I. N. G. “Strengthening external magnetic fields with activated carbon graphene for increasing hydrogen production in water electrolysis”. Int J Hydrogen Energy 2020, 45, 19370–19380. [Google Scholar] [CrossRef]
- Haverkort, J. W.; Rajaei, H. “Voltage losses in zero-gap alkaline water electrolysis”. J Power Sources 2021, 497, 229864. [Google Scholar] [CrossRef]
- Jang, D.; Cho, H. S.; Kang, S. “Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system”. Appl Energy 2021, 287, 116554. [Google Scholar] [CrossRef]
- Dukić, A.; Firak, M. “Hydrogen production using alkaline electrolyser and photovoltaic (PV) module”. Int J Hydrogen Energy 2011, 36, 7799–7806. [Google Scholar] [CrossRef]
- Ziems, C.; Tannert, D.; Krautz, H. J. “Project presentation: Design and installation of advanced high pressure alkaline electrolyser-prototypes”. Energy Procedia 2012, 29, 744–753. [Google Scholar] [CrossRef]
- de Fátima Palhares, D. D’A.; Martins Vieira, L. G.; Ribeiro Damasceno, J. J. “Hydrogen production by a low-cost electrolyser developed through the combination of alkaline water electrolysis and solar energy use”. Int J Hydrogen Energy 2018, 43, 4265–4275. [Google Scholar] [CrossRef]
- Amikam, G.; Nativ, P.; Gendel, Y. “Chlorine-free alkaline seawater electrolysis for hydrogen production”. Int J Hydrogen Energy 2018, 43, 6504–6514. [Google Scholar] [CrossRef]
- Kovač, A.; Marciuš, D.; Budin, L. “Solar hydrogen production via alkaline water electrolysis”. Int J Hydrogen Energy 2019, 44, 9841–9848. [Google Scholar] [CrossRef]
- Demirdelen, T.; Ekinci, F.; Mert, B. D.; Karasu, İ.; Tümay, M. “Green touch for hydrogen production via alkaline electrolysis: The semi-flexible PV panels mounted wind turbine design, production and performance analysis”. Int J Hydrogen Energy 2020, 45, 10680–10695. [Google Scholar] [CrossRef]
- Amores, E.; Rodríguez, J.; Carreras, C. “Influence of operation parameters in the modeling of alkaline water electrolysers for hydrogen production”. Int J Hydrogen Energy 2014, 39, 13063–13078. [Google Scholar] [CrossRef]
- Sánchez, M.; Amores, E.; Rodríguez, L.; Clemente-Jul, C. “Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyser”. Int J Hydrogen Energy 2018, 43, 20332–20345. [Google Scholar] [CrossRef]
- Sánchez, M.; Amores, E.; Abad, D.; Rodríguez, L.; Clemente-Jul, C. “Aspen Plus model of an alkaline electrolysis system for hydrogen production”. Int J Hydrogen Energy 2020, 45, 3916–3929. [Google Scholar] [CrossRef]
- Lee, J.; Alam, A.; Ju, H. “Multidimensional and transient modeling of an alkaline water electrolysis cell”. Int J Hydrogen Energy 2021, 46, 13678–13690. [Google Scholar] [CrossRef]
- Jang, D.; Choi, W.; Cho, H. S.; Cho, W. C.; Kim, C. H.; Kang, S. “Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system”. J Power Sources 2021, 506, 230106. [Google Scholar] [CrossRef]
- Sakas, G.; Ibáñez-Rioja, A.; Ruuskanen, V.; Kosonen, A.; Ahola, J.; Bergmann, O. “Dynamic energy and mass balance model for an industrial alkaline water electrolyser plant process”. Int J Hydrogen Energy 2022, 47, 4328–4345. [Google Scholar] [CrossRef]
- Coskun Avci, A.; Toklu, E. A new analysis of two phase flow on hydrogen production from water electrolysis. Int J Hydrogen Energy 2022, 47, 6986–6995. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, J.; Yu, Z.; Zhang, C.; Gao, S.; Wang, P. “Experimental studies and modeling of a 250-kW alkaline water electrolyser for hydrogen production”. J Power Sources 2022, 544, 231886. [Google Scholar] [CrossRef]
- Horcasitas-Verdiguel, M.; Sandoval-Pineda, J. M.; Grunstein-Ramírez, B. A.; Terán-Balaguer, L. F.; González-Huerta, R. de G. “Design and manufacture of ice test module to reduce gasoline consumption using oxyhydrogen gas from an alkaline electrolyser”. Energy & Fuels 2016, 30, 6640–6645. [Google Scholar] [CrossRef]
- Trujillo-Olivares, I.; Soriano-Moranchel, F.; Álvarez-Zapata, L. A.; González-Huerta, R. de G.; Sandoval-Pineda, J. M. “Design of alkaline electrolyser for integration in diesel engines to reduce pollutants emission”. International Journal of Hydrogen Energy 2019, 44, 25277–25286. [Google Scholar] [CrossRef]
- Xia, Y.; Cheng, H.; He, H.; Wei, W. “Efficiency and consistency enhancement for alkaline electrolysers driven by renewable energy sources”. Commun Eng 2023, 2, 22. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. “Recent progress in alkaline water electrolysis for hydrogen production and applications”. Progress in Energy and Combustion Science 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Nagai, N.; Takeuchi, M.; Kimura, T.; Oka, T. “Existence of optimum space between electrodes on hydrogen production by water electrolysis”. International Journal of Hydrogen Energy 2003, 28, 35–41. [Google Scholar] [CrossRef]
- Trujillo-Olivares, I.; Wintergerst-Felipe, A.; Gutiérrez-Paredes, G. J.; González-Huerta, R. de G.; Sandoval-Pineda, J. M. “Dual combustion oxyhydrogen-diesel: Effects on internal components of engine”. International Journal of Hydrogen Energy 2024, 49, 178–192. [Google Scholar] [CrossRef]
- Godula Jopek, A. “Hydrogen Production: by Electrolysis”; Wiley-VCH: Weinheim, Germany, 2015. [Google Scholar]










| Design parameter | Data | Unit |
| Electrolyser power | 5 | kW |
| Efficiency | 50 | % |
| Current density | 0.5 | A cm-2 |
| Electrodes diameter | 10 | cm |
| Number of electrodes | 36 | Part |
| H2 density @ 1 atm y 25 °C | 0.0823 | g L -1 |
| Higher heating value of H2 | 39.4 | Wh g-1 |
| PMH2 | 2 | g mol-1 |
| Faraday constant | 96,485 | C mol-1 |
| Operation time | 1 | h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
