Submitted:
10 February 2026
Posted:
11 February 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results
2.1. Patient Characteristics and Clinical Assessment of PRP Response
2.2. Proteomic Analysis
3. Discussion
4. Materials and Methods
4.1. PRP Preparation and Injection
4.2. Post-Injection Protocol
4.3. sEVs Characterization
4.3.1. Isolation

4.3.2. The Bicinchoninic Acid (BCA) Assay
4.3.3. Nanotracking Analysis
4.3.4. Immunoblotting
4.3.5. Transmission Electron Microscopy (TEM)
4.3.6. Statistics
4.4. Proteome Analysis
4.4.1. Proteomic Sample Preparation
4.4.2. Mass Spectroscopy
4.4.3. Proteomics Searches
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| DOAJ | Directory of open access journals |
| OA | Osteoarthritis |
| sEV | Small extracellular vesicle |
| PRP | Platelet Rich Plasma |
| PPP | Platelet Poor Plasma |
| RBC | Red Blood Cells |
| LR-PRP | Leukocyte-Rich PRP |
| GROC | Global Rating of Change |
| BCA | Bicinchoninic Acid |
| R | Responder |
| NR | Non-Responder |
| SEC | Size Exclusion Chromatography |
| miRNA | Micro Ribonucleic Acid |
| LC-MS/MS | Liquid Chromatography-Tandem Mass Spectroscopy |
| DDA | Data Dependent Acquisition |
| DIA | Data Independent Acquisition |
| PSMs | Peptide-spectrum matches |
| FDR | False Detection Rate |
| TIC | Total Ion Current |
| TCEP | tris(2-carboxyethyl)phosphine (TCEP) |
| CAA | chloroacetamide |
| TIC | Total Ion Current |
| GnHCL | Guanidine Hydrochloride |
| TEM | Transmission electron microscopy |
| MRPS | Microfluidic Resistive Pulse Sensing |
References
- McLarnon, M.; Heron, N. Intra-articular platelet-rich plasma injections versus intra-articular corticosteroid injections for symptomatic management of knee osteoarthritis: systematic review and meta-analysis. BMC Musculoskelet Disord 2021, 22(1), 550. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Driessen, A.; Quack, V.; Sippel, N.; Cooper, B.; Mansy, Y.E.; Tingart, M.; Eschweiler, J. Comparison between intra-articular infiltrations of placebo, steroids, hyaluronic and PRP for knee osteoarthritis: a Bayesian network meta-analysis. Arch Orthop Trauma Surg 2021, 141(9), 1473–1490. [Google Scholar] [CrossRef] [PubMed]
- Szwedowski, D.; Mobasheri, A.; Moniuszko, A.; Zabrzynski, J.; Jeka, S. Intra-Articular Injection of Platelet-Rich Plasma Is More Effective than Hyaluronic Acid or Steroid Injection in the Treatment of Mild to Moderate Knee Osteoarthritis: A Prospective, Randomized, Triple-Parallel Clinical Trial. Biomedicines 2022, 10(5). [Google Scholar] [CrossRef] [PubMed]
- Li, A.K.; Stavrakis, A.I.; Photopoulos, C. Platelet-rich plasma use for hip and knee osteoarthritis in the United States. Knee 2022, 39, 239–246. [Google Scholar] [CrossRef]
- Diaz Haaz, D.I.; Rizo Castro, O. Efficacy and Safety of Intra-articular Platelet-Rich Plasma (PRP) Versus Corticosteroid Injections in the Treatment of Knee Osteoarthritis: A Systematic Review of Randomized Clinical Trials. Cureus 2025, 17(3), p. e80948. [Google Scholar] [CrossRef]
- Kaye, A.D.; Boullion, J.A.; Abdelsalam, M.; Green, M.A.; Nguyen, A.; MacDonald, E.M.; Dastgah, M.; Ballaera, C.; Ahmadzadeh, S.; Mychaskiw, G., Ii; Shekoohi, S.; Robinson, C.L. Efficacy of Intra-Articular Platelet-Rich Plasma Injections in Treatment of Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Curr Pain Headache Rep 2025, 29(1), p. 13. [Google Scholar] [CrossRef]
- Meheux, C.J.; McCulloch, P.C.; Lintner, D.M.; Varner, K.E.; Harris, J.D. Efficacy of Intra-articular Platelet-Rich Plasma Injections in Knee Osteoarthritis: A Systematic Review. Arthroscopy 2016, 32(3), 495–505. [Google Scholar] [CrossRef]
- Berrigan, W.; Tao, F.; Kopcow, J.; Park, A.L.; Allen, I.; Tahir, P.; Reddy, A.; Bailowitz, Z. The Effect of Platelet Dose on Outcomes after Platelet Rich Plasma Injections for Musculoskeletal Conditions: A Systematic Review and Meta-Analysis. Curr Rev Musculoskelet Med 2024, 17(12), 570–588. [Google Scholar] [CrossRef]
- Berrigan, W.A.; Bailowitz, Z.; Park, A.; Reddy, A.; Liu, R.; Lansdown, D. A Greater Platelet Dose May Yield Better Clinical Outcomes for Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Systematic Review. Arthroscopy 2025. 41, 3, 809–817. [Google Scholar] [CrossRef]
- Pham, T.; Van Der Heijde, D.; Lassere, M.; Altman, R.D.; Anderson, J.J.; Bellamy, N.; Hochberg, M.; Simon, L.; Strand, V.; Woodworth, T.; Dougados, M.; Omeract, O. Outcome variables for osteoarthritis clinical trials: The OMERACT-OARSI set of responder criteria. J Rheumatol 2003, 30(7), 1648–54. [Google Scholar]
- Jayaram, P.; Mitchell, P.J.T.; Shybut, T.B.; Moseley, B.J.; Lee, B. Leukocyte-Rich Platelet-Rich Plasma Is Predominantly Anti-inflammatory Compared With Leukocyte-Poor Platelet-Rich Plasma in Patients With Mild-Moderate Knee Osteoarthritis: A Prospective, Descriptive Laboratory Study. Am J Sports Med 2023, 51(8), 2133–2140. [Google Scholar] [CrossRef]
- Xiong, Y.; Gong, C.; Peng, X.; Liu, X.; Su, X.; Tao, X.; Li, Y.; Wen, Y.; Li, W. Efficacy and safety of platelet-rich plasma injections for the treatment of osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Front Med (Lausanne) 2023, 10, 1204144. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, L.; Ma, C.; Wang, G.; Zhang, Y.; Sun, S. Exosomes derived from platelet-rich plasma present a novel potential in alleviating knee osteoarthritis by promoting proliferation and inhibiting apoptosis of chondrocyte via Wnt/beta-catenin signaling pathway. J Orthop Surg Res 2019, 14(1), p. 470. [Google Scholar] [CrossRef] [PubMed]
- Rui, S.; Yuan, Y.; Du, C.; Song, P.; Chen, Y.; Wang, H.; Fan, Y.; Armstrong, D.G.; Deng, W.; Li, L. Comparison and Investigation of Exosomes Derived from Platelet-Rich Plasma Activated by Different Agonists. Cell Transplant 2021, 30, p. 9636897211017833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Chen, J.; Qian, D.; Gao, P.; Qin, T.; Jiang, T.; Yi, J.; Xu, T.; Huang, Y.; Wang, Q.; Zhou, Z.; Bao, T.; Zhao, X.; Liu, H.; Zheng, Z.; Fan, J.; Zhao, S.; Li, Q.; Yin, G. Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J Nanobiotechnology 2022, 20(1), p. 56. [Google Scholar] [CrossRef]
- Song, I.; Glass, N.A.S.; E.A.; Martin, J.A.; Hlas, A.; Hall, M.M.; Kruse, R.C.; Seol, D.; Duchman, K.R.; Buckwalter, J.A. Exosome Size in Platelet-Rich Plasma is Associated with Effectiveness in Patients Treated for Knee Osteoarthritis. Orthopedic Journal of Sports Medicine 2025, 13(9). [Google Scholar] [CrossRef]
- van de Wakker, S.I.; Bauza-Martinez, J.; Rios Arceo, C.; Manjikian, H.; Snijders Blok, C.J.B.; Roefs, M.T.; Willms, E.; Maas, R.G.C.; Pronker, M.F.; de Jong, O.G.; Wu, W.; Gorgens, A.; El Andaloussi, S.; Sluijter, J.P.G.; Vader, P. Size matters: Functional differences of small extracellular vesicle subpopulations in cardiac repair responses. J Extracell Vesicles 2024, 13(1), p. e12396. [Google Scholar] [CrossRef]
- Willms, E.; Johansson, H.J.; Mager, I.; Lee, Y.; Blomberg, K.E.; Sadik, M.; Alaarg, A.; Smith, C.I.; Lehtio, J.; El Andaloussi, S.; Wood, M.J.; Vader, P. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 2016, 6, p. 22519. [Google Scholar] [CrossRef]
- Zhang, H.; Freitas, D.; Kim, H.S.; Fabijanic, K.; Li, Z.; Chen, H.; Mark, M.T.; Molina, H.; Martin, A.B.; Bojmar, L.; Fang, J.; Rampersaud, S.; Hoshino, A.; Matei, I.; Kenific, C.M.; Nakajima, M.; Mutvei, A.P.; Sansone, P.; Buehring, W.; Wang, H.; Jimenez, J.P.; Cohen-Gould, L.; Paknejad, N.; Brendel, M.; Manova-Todorova, K.; Magalhaes, A.; Ferreira, J.A.; Osorio, H.; Silva, A.M.; Massey, A.; Cubillos-Ruiz, J.R.; Galletti, G.; Giannakakou, P.; Cuervo, A.M.; Blenis, J.; Schwartz, R.; Brady, M.S.; Peinado, H.; Bromberg, J.; Matsui, H.; Reis, C.A.; Lyden, D. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 2018, 20(3), 332–343. [Google Scholar] [CrossRef]
- de Menezes-Neto, A.; Saez, M.J.; Lozano-Ramos, I.; Segui-Barber, J.; Martin-Jaular, L.; Ullate, J.M.; Fernandez-Becerra, C.; Borras, F.E.; Del Portillo, H.A. Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles 2015, 4, p. 27378. [Google Scholar] [CrossRef]
- Gamez-Valero, A.; Monguio-Tortajada, M.; Carreras-Planella, L.; Franquesa, M.; Beyer, K.; Borras, F.E. Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles’ characteristics compared to precipitating agents. Sci Rep 2016, 6, p. 33641. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.D.; Samuels, M.; Jones, W.; Stewart, N.; Eravci, M.; Mazarakis, N.K.; Gilbert, D.; Critchley, G.; Giamas, G. Confirming size-exclusion chromatography as a clinically relevant extracellular vesicles separation method from 1mL plasma through a comprehensive comparison of methods. BMC Methods 2024, 1(1), 7. [Google Scholar] [CrossRef]
- Hickman, E.; Carberry, V.; Carberry, C.; Cooper, B.; Mordant, A.L.; Mills, A.; Sokolsky, M.; Herring, L.E.; Alexis, N.E.; Rebuli, M.E.; Jaspers, I.; Sheats, K.; Rager, J.E. Respiratory extracellular vesicle isolation optimization through proteomic profiling of equine samples and identification of candidates for cell-of-origin studies. PLoS One 2025, 20(1), e0315743. [Google Scholar] [CrossRef] [PubMed]
- Dilsiz, N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol 2024, 50, p. 102121. [Google Scholar] [CrossRef] [PubMed]
- Vanderboom, P.M.; Dasari, S.; Ruegsegger, G.N.; Pataky, M.W.; Lucien, F.; Heppelmann, C.J.; Lanza, I.R.; Nair, K.S. A size-exclusion-based approach for purifying extracellular vesicles from human plasma. Cell Rep Methods 2021, 1(3). [Google Scholar] [CrossRef]
- Meston, D.; Stoll, D.R. Pitfalls in Proteomics: Avoiding Problems That Can Occur Before Data Acquisition Begins. LCGC North America 2022, 40(11), 524–528. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, J.; Cai, K.; Qiao, Y.; Zhang, X.; Wang, L.; Kang, Y.; Wu, X.; Zhao, B.; Wang, X.; Zhang, T.; Lin, Z.; Wu, J.; Lu, S.; Gao, H.; Jin, H.; Xu, C.; Huangfu, X.; James, Z.; Chen, Q.; Zheng, X.; Liu, N.N.; Zhao, J. CCN2 mediates fibroblast-macrophage interaction in knee arthrofibrosis based on single-cell RNA-seq analysis. Bone Res 2025, 13(1), p. 26.10. [Google Scholar] [CrossRef]
- Barter, M.J.; Turner, D.A.; Rice, S.J.; Hines, M.; Lin, H.; Falconer, A.M.D.; McDonnell, E.; Soul, J.; Arques, M.D.C.; Europe-Finner, G.N.; Rowan, A.D.; Young, D.A.; Wilkinson, D.J. SERPINA3 is a marker of cartilage differentiation and is essential for the expression of extracellular matrix genes during early chondrogenesis. Matrix Biol 2024, 133, 33–42. [Google Scholar] [CrossRef]
- Sun, X.; Gu, X.; Peng, J.; Yang, L.; Zhang, X.; Ran, Z.; Xiong, J. PRDX2 Knockdown Inhibits Extracellular Matrix Synthesis of Chondrocytes by Inhibiting Wnt5a/YAP1/CTGF and Activating IL-6/JAK2/STAT3 Pathways in Deer Antler. Int J Mol Sci 2022, 23(9). [Google Scholar] [CrossRef]
- Wilkinson, D.J., Serpins in cartilage and osteoarthritis: what do we know? Biochem Soc Trans 2021, 49(2), 1013–1026. [CrossRef]
- Jiang, Z.; Huang, C.; Guo, E.; Zhu, X.; Li, N.; Huang, Y.; Wang, P.; Shan, H.; Yin, Y.; Wang, H.; Huang, L.; Han, Z.; Ouyang, K.; Sun, L. Platelet-Rich Plasma in Young and Elderly Humans Exhibits a Different Proteomic Profile. J Proteome Res 2024, 23(5), 1788–1800. [Google Scholar] [CrossRef]
- Miroshnychenko, O.; Chalkley, R.J.; Leib, R.D.; Everts, P.A.; Dragoo, J.L. Proteomic analysis of platelet-rich and platelet-poor plasma. Regen Ther 2020, 15, 226–235. [Google Scholar] [CrossRef]
- Miao, C.; Zhou, W.; Wang, X.; Fang, J. The Research Progress of Exosomes in Osteoarthritis, With Particular Emphasis on the Mediating Roles of miRNAs and lncRNAs. Front Pharmacol 2021, 12, 685623. [Google Scholar] [CrossRef]
- Kamper, S.J.; Maher, C.G.; Mackay, G. Global rating of change scales: a review of strengths and weaknesses and considerations for design. J Man Manip Ther 2009, 17(3), 163–70. [Google Scholar] [CrossRef]


| Response | Description | Score |
|---|---|---|
| NR | No Improvement | 0 |
| NR | Minimal Improvement | 1 |
| NR | Mild Improvement | 2 |
| R | Significant Improvement | 3 |
| R | Near Complete Resolution | 4 |
| R | Complete Resolution | 5 |
| Sample # | Patient Description | Score | Response |
|---|---|---|---|
| 1* | athlete, significant improvement in symptoms | 3 | R |
| 2 | highly active, healthy 60-year-old, no improvement in symptoms | 0 | NR |
| 3 | active healthy, near complete resolution in symptoms | 4 | R |
| 4* | athlete, significant improvement in symptoms | 3 | R |
| 5 | athlete, minimal change in symptoms | 1 | NR |
| 6 | middle aged healthy person, significant improvement in symptoms | 3 | R |
| 7 | middle aged, mildly active, overweight person, complete symptom resolution | 5 | R |
| 8 | middle aged, mildly active, overweight person, only mild improvement in symptoms | 2 | NR |
| 9 | 65-year-old, medically ill person, significant improvement in symptoms | 3 | R |
| Sample # | Mean sEV Size (nm) | sEV Concentration (x 1011/mL) |
Platelet Concentration (x 108/mL) |
|---|---|---|---|
| 1* | 69.4 | 22 | 4.0 |
| 2 | 72.0 | 2 | 2.0 |
| 3 | 72.8 | 11 | 3.0 |
| 4* | 74.0 | 30 | 4.5 |
| 5 | 76.9 | 1 | 2.0 |
| 6 | 70.2 | 8 | 5.0 |
| 7 | 71.0 | 12 | 3.4 |
| 8 | 69.6 | 8 | 3.7 |
| 9 | 69.9 | 18 | 2.6 |
| Mean | 71.8 | 12.4 | 3.4 |
| ± SD | 2.48 | 9.44 | 1.06 |
![]() |
![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).


