Submitted:
10 February 2026
Posted:
11 February 2026
You are already at the latest version
Abstract
Keywords:
Introduction
Materials and Methods
Participants
Intervention (Plant-Derived Amino-Acid Based HMF)
Comparator (Bovine-Derived Whey Protein Based HMF)
Enteral Feeding and Other Care Practices
Outcomes
Primary outcomes
- Time to reach enteral feed volume of 180 mL/Kg/d.
- Weight gain (g/kg/d), head circumference increment (cm/week) and length increment (cm/week) from enrolment until discharge from the hospital, and at 40 weeks’ PMA.
Secondary outcomes
- Weight gain (g/Kg/d) for different time intervals; birth until discharge, birth until 40 weeks’ PMA, from the day of regaining birth weight until 40 weeks’ PMA and from the day of discharge until 40 weeks PMA (post hoc)
- Days to regain birth weight (post hoc)
- Incidence of feed intolerance (defined as necessity to keep the neonate nil by feeds for at least one day)
- NEC stage ≥ 2 (modified Bells’ staging) [38]
- All-cause mortality
- Late Onset Neonatal Sepsis (LONS) (Blood culture proven sepsis or probable sepsis (clinical signs or symptoms indicative of sepsis with ≥ 2 altered biochemical sepsis parameters with the blood culture being negative))
- Requirement of red blood transfusion (post hoc)
- BPD (defined as oxygen requirement or any other form of respiratory support at 36 weeks’ PMA)
- ROP requiring intervention
- Metabolic bone disease
- Extra uterine growth restriction (EUGR) defined as weight for age of less than 10th centile at 40 weeks’ PMA
- Duration of hospital stay
Randomization Process, Allocation Concealment and Blinding
Sample Size
Data Collection and Analysis
Results
Primary Outcomes
Time to Reach Enteral Feed Volume of 180 mL/Kg/d
Anthropometric Parameters from Enrolment Until Discharge and 40 Weeks’ PMA
Secondary Outcomes
Sub-Group Analyses (Post Hoc)
Sensitivity Analyses
Discussion
Conclusions
Ethics Approval
Consent to Participate in the Study and Publish
Competing Interests
Author Contributions
Funding
Data Availability Statement
References
- Brown, J.V.; Embleton, N.D.; Harding, J.E.; McGuire, W. Multi-Nutrient Fortification of Human Milk for Preterm Infants. Cochrane Database Syst. Rev. 2016, CD000343.
- Parker, M.G.; Stellwagen, L.M.; Noble, L. Promoting Human Milk and Breastfeeding for the Very Low Birth Weight Infant. Pediatrics 2021, 148, e2021054272.
- Ziegler, E.E. Protein Requirements of Very Low Birth Weight Infants. J. Pediatr. Gastroenterol. Nutr. 2007,45, S170–S174.
- Horbar, J.D.; Ehrenkranz, R.A.; Badger, G.J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Buzas, J.S.; Bertino, E.; Gagliardi, L.; Zampino, G.; et al. Weight Growth Velocity and Postnatal Growth Failure in Infants 501 to 1500 Grams: 2000–2013. Pediatrics 2015, 136, e84–e92.
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral Nutrient Supply for Preterm Infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91.
- Embleton, N.D.; Morgan, C.; King, C. Balancing the Risks and Benefits of Parenteral Nutrition for Preterm Infants: Can We Define the Optimal Composition? Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F351–F354.
- Lucas, A.; Cole, T.J. Breast Milk and Neonatal Necrotising Enterocolitis. Lancet 1990,336, 1519–1523.
- Arslanoglu, S.; Corpeleijn, W.; Moro, G.; Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Domellöf, M.; Fewtrell, M.; Hojsak, I.; et al. Donor Human Milk for Preterm Infants: Current Evidence and Research Directions. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 535–542.
- Shah, S.D.; Dereddy, N.; Jones, T.L.; Dhanireddy, R.; Talati, A.J. Early versus Delayed Human Milk Fortification in Very Low Birth Weight Infants—A Randomized Controlled Trial. J. Pediatr. 2016, 174, 126–131.e1.
- Rochow, N.; Fusch, G.; Choi, A.; Chessell, L.; Elliott, L.; McDonald, K.; Kuiper, E.; Purcha, M.; Turner, S.; Chan, E.; et al. Target Fortification of Breast Milk with Fat, Protein, and Carbohydrates for Preterm Infants. J. Pediatr. 2013, 163, 1001–1007.
- Arslanoglu, S.; Boquien, C.-Y.; King, C.; Lamireau, D.; Tonetto, P.; Barnett, D.; Bertino, E.; Gaya, A.; Gebauer, C.; Grovslien, A.; et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front. Pediatr. 2019, 7, 76.
- Gu, X.; Shi, X.; Zhang, L.; Zhou, Y.; Cai, Y.; Jiang, W.; Zhou, Q. Evidence Summary of Human Milk Fortifier in Preterm Infants. Transl. Pediatr. 2021,10, 3058–3067.
- Li, Y.; Pan, X.; Yuan, S. Human Milk-Based or Bovine Milk-Based Fortifiers for Human Milk-Fed Preterm Infants: A Narrative Review. Front. Pediatr. 2021, 9, 719096.
- Demers-Mathieu, V.; Qu, Y.; Underwood, M.A.; Borghese, R.; Dallas, D.C. Premature Infants Have Lower Gastric Digestion Capacity for Human Milk Proteins than Term Infants. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 816–821.
- Sağır, H.; Çağan Appak, Y.; Aksoy, B.; Kahveci, S.; Onbaşı Karabağ, Ş.; Gülpınar Aydın, Ö.; Alaca, S.; Baran, M. Impact of Using Cow’s Milk Formula During the First Three Postnatal Days and Other Etiological Factors on the Development of Cow’s Milk Protein Allergy. J. Clin. Med. 2025, 14, 8664.
- Abdelhamid, A.E.; Chuang, S.-L.; Hayes, P.; Fell, J.M. Evolution of in Vitro Cow’s Milk Protein-Specific Inflammatory and Regulatory Cytokine Responses in Preterm Infants with Necrotising Enterocolitis. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 5–11.
- Basany, L.; Ali, A.; Gandrakota, N.P.G.; Kulkarni, A.B.; Tabassum, M.; Manjunath, H.; Batthula, V. Balancing Nutrition and Osmolality: Risk of Hyperosmolality During Individualized Fortification With Protein Fortifiers in an In Vitro Study. Cureus 2025, 17, e86602.
- Tang, Q.; Yin, D.; Jin, Z.; Zhang, L.; Zhou, P. Osmolality of Donor Human Milk Rises Dramatically within Minutes of Fortification with Varied Degrees Depending on the Fortifier Used. Front. Pediatr. 2025, 13, 1596255.
- Pearson, F.; Johnson, M.J.; Leaf, A.A. Milk Osmolality: Does It Matter? Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F166–F169.
- Abrams, S.A.; Schanler, R.J.; Lee, M.L.; Rechtman, D.J. Greater Mortality and Morbidity in Extremely Preterm Infants Fed a Diet Containing Cow Milk Protein Products. Breastfeed. Med. 2014, 9, 281–285.
- Sullivan, S.; Schanler, R.J.; Kim, J.H.; Patel, A.L.; Trawöger, R.; Kiechl-Kohlendorfer, U.; Chan, G.M.; Blanco, C.L.; Abrams, S.; Cotten, C.M.; et al. An Exclusively Human Milk-Based Diet Is Associated with a Lower Rate of Necrotizing Enterocolitis than a Diet of Human Milk and Bovine Milk-Based Products. J. Pediatr. 2010, 156, 562–567.e1.
- Feng, Y.; Gao, Y.; Gu, Y.; Liu, Y.; Xu, Y.; Li, S. Impact of Three Mammalian Milk-Derived Fortifiers on Morbidity and Mortality in Preterm Infants: A Systematic Review and Network Meta-Analysis. Int. Breastfeed. J. 2025, 21, 9.
- Kim, J.H.; Chan, G.; Schanler, R.; Groh-Wargo, S.; Bloom, B.; Dimmit, R.; Williams, L.; Baggs, G.; Barrett-Reis, B. Growth and Tolerance of Preterm Infants Fed a New Extensively Hydrolyzed Liquid Human Milk Fortifier. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 665–671.
- O’Connor, D.L.; Kiss, A.; Tomlinson, C.; Bando, N.; Bayliss, A.; Campbell, D.M.; Daneman, A.; Francis, J.; Kotsopoulos, K.; Shah, P.S.; et al. Nutrient Enrichment of Human Milk with Human and Bovine Milk-Based Fortifiers for Infants Born Weighing 1250 <g: A Randomized Clinical Trial. Am. J. Clin. Nutr. 2018, 108, 108–116.
- Galis, R.; Trif, P.; Mudura, D.; Pop, L.; Fufezan, O.; Orășan, R. Association of Fortification with Human Milk versus Bovine Milk-Based Fortifiers on Short-Term Outcomes in Preterm Infants—A Meta-Analysis. Nutrients 2024, 16, 910.
- Ananthan, A.; Balasubramanian, H.; Rao, S.; Patole, S. Human Milk-Derived Fortifiers Compared with Bovine Milk-Derived Fortifiers in Preterm Infants: A Systematic Review and Meta-Analysis. Adv. Nutr. 2020, 11, 1325–1333.
- Grace, E.; Hilditch, C.; Gomersall, J.; Collins, C.T.; Rumbold, A.; Keir, A.K. Safety and Efficacy of Human Milk-Based Fortifier in Enterally Fed Preterm and/or Low Birthweight Infants: A Systematic Review and Meta-Analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 137–142.
- Huizing, M.J.; Vizzari, G.; Bartoš, F.; Cavallaro, G.; Gianni, M.L.; Villamor, E. Absence of Evidence of Beneficial Effects of Human Milk-Based Fortifier: A Bayesian Model-Averaged Meta-Analysis. Acta Paediatr. 2025, 114, 3309–3316.
- Kumar, M.; Upadhyay, J.; Basu, S. Fortification of Human Milk with Infant Formula for Very Low Birth Weight Preterm Infants: A Systematic Review. Indian Pediatr. 2021, 58, 253–258.
- Vanderhoof, J.; Moore, N.; de Boissieu, D. Evaluation of an Amino Acid-Based Formula in Infants Not Responding to Extensively Hydrolyzed Protein Formula. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 531–533.
- Ikeda, M. Amino Acid Production Processes. In Microbial Production of L-Amino Acids; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–35.
- Bertino, E.; Giribaldi, M.; Cester, E.A.; Coscia, A.; Trapani, B.M.; Peila, C.; Arslanoglu, S.; Moro, G.E.; Cavallarin, L. New Human Milk Fortifiers for the Preterm Infant. J. Pediatr. Neonatal Individ. Med. 2017, 6, e060124.
- Chandra, R.; Singh, P.; Verma, A.; Patel, S.; Sharma, R.; Gupta, N.; Mehta, K.; Joshi, A.; Reddy, S.; Kumar, V.; et al. A Study of Safety and Effectiveness of Amino-Acids Based Multi-Nutrient Fortifier in Premature Infants Admitted in NICU. Int. J. Contemp. Pediatr. 2024, 11, 362–367.
- Karotkar, U.; Sharma, M.; Desai, R.; Mehta, D.; Patel, K.; Nair, S.; Iyer, S.; Choudhary, B.; Agarwal, P.; Kapoor, S.; et al. Effects of Amino-Acids Based Fortifier in Preterm Infants. Int. J. Contemp. Health. 2025, 3, 1–8.
- Eldridge, S.M.; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A.; PAFS Consensus Group. CONSORT 2010 Statement: Extension to Randomised Pilot and Feasibility Trials. Pilot Feasibility Stud. 2016, 2, 64.
- Embleton, N.D.; Moltu, S.J.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268.
- Robinson, D.T.; Calkins, K.L.; Chen, Y.; Cober, M.P.; Falciglia, G.H.; Church, D.D.; Mey, J.; McKeever, L.; Sentongo, T. Guidelines for Parenteral Nutrition in Preterm Infants: The American Society for Parenteral and Enteral Nutrition. J. Parenter. Enter. Nutr. 2023, 47, 830–858.
- Walsh, M.C.; Kliegman, R.M. Necrotizing Enterocolitis: Treatment Based on Staging Criteria. Pediatr. Clin. N. Am. 1986, 33, 179–201.
- Teare, M.D.; Hayman, A.; Dimairo, M.; Shephard, N.; Whitehead, A.; Walters, S.J. Sample Size Requirements for Pilot Randomised Controlled Trials with Continuous Outcomes: A Simulation Study. Trials 2013, 14, P46.
- Aguilar-Lopez, M.; Wetzel, C.; MacDonald, A.; Ho, T.T.B.; Donovan, S.M. Human Milk-Based or Bovine Milk-Based Fortifiers Differentially Impact the Development of the Gut Microbiota of Preterm Infants. Front. Pediatr. 2021, 9, 719096.
- Aydemir, O.; Aydemir, Y.; Surmeli Onay, O. How Does Bovine Milk-Based Fortification Alter the Oxidant-Antioxidant Profile of Breast Milk in Preterm Infants? J. Pediatr. Gastroenterol. Nutr. 2025, 80, 861–869.
- Picaud, J.C.; Reynolds, P.R.; Clarke, P.; van den Hooven, E.; van Weissenbruch, M.M.; van Lingen, R.A.; Goedhart, A.; Botma, A.; Boettger, R.; van Westering-Kroon, E.; et al. A Novel Human Milk Fortifier Supports Adequate Growth in Very Low Birth Weight Infants: A Non-Inferiority Randomised Controlled Trial. Arch. Dis. Child. Fetal Neonatal Ed. 2025, 110, 512–519.
- Bhatt, A.N.; Bingham, R.; Gaillard, P.; Stansfield, B.K. Association between Nonacidified Standard and High-Protein Human Milk Fortifiers and Increased Weight Velocity Relative to Acidified Human Milk Fortifiers in Preterm Infants: A Retrospective Cohort Study. J. Parenter. Enter. Nutr. 2026, 50, 48–55.
- Kreissl, A.; Zwiauer, V.; Repa, A.; Binder, C.; Haninger, N.; Jilma, B.; Berger, A.; Haiden, N. Effect of Fortifiers and Additional Protein on the Osmolarity of Human Milk: Is It Still Safe for the Premature Infant? J. Pediatr. Gastroenterol. Nutr. 2013, 57, 432–437.
- Kreins, N.; Buffin, R.; Michel-Molnar, D.; Chambon, V.; Pradat, P.; Picaud, J.C. Individualized Fortification Influences the Osmolality of Human Milk. Front. Pediatr. 2018, 6, 322.
- Ehrenkranz, R.A.; Das, A.; Wrage, L.A.; Poindexter, B.B.; Higgins, R.D.; Stoll, B.J.; Oh, W.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Early Nutrition Mediates the Influence of Severity of Illness on Extremely LBW Infants. Pediatr. Res. 2011, 69, 522–529.
- North, K.; Marx Delaney, M.; Bose, C.; Lee, A.C.C.; Vesel, L.; Adair, L.; Semrau, K. The Effect of Milk Type and Fortification on the Growth of Low-Birthweight Infants: An Umbrella Review of Systematic Reviews and Meta-Analyses. Matern. Child Nutr. 2021, 17, e13176.
- Young, L.; Embleton, N.D.; McCormick, F.M.; McGuire, W. Multinutrient Fortification of Human Breast Milk for Preterm Infants Following Hospital Discharge. Cochrane Database Syst. Rev. 2013, 2, CD004866.
- Wiechers, C.; Bernhard, W.; Goelz, R.; Poets, C.F.; Franz, A.R. Optimizing Early Neonatal Nutrition and Dietary Pattern in Premature Infants. Int. J. Environ. Res. Public Health 2021, 18, 7544.



| Variable | Bovine HMF (n=70) | Plant HMF (n=66) |
| Gestational age (w) | 31.0 [29.0, 32.0] | 31.0 [30.0, 33.0] |
| Birth weight (g) | 1505 [1192, 1769] | 1565 [1200, 1751] |
| Admission temperature (°C) | 36.5 [36.2, 36.6] | 36.5 [36.4, 36.7] |
| Age at enrolment (h) | 48 [48, 96] | 48 [48, 96] |
| Weight at enrolment (g) | 1472 [1142, 1745] | 1515 [1170, 1720] |
| Length at enrolment (cm) | 40.0 [38.0, 42.0] | 41.0 [38.1, 43.0] |
| Head circumference at enrolment (cm) | 29.0 [27.5, 30.0] | 29.0 [28.0, 30.0] |
| Gestational age category | ||
| <28 w | 7 (10.0%) | 3 (4.5%) |
| 28-<32 w | 32 (45.7%) | 35 (53.0%) |
| ≥32 w | 31 (44.3%) | 28 (42.4%) |
| Birth weight category | ||
| <1000 g | 10 (14.3%) | 5 (7.6%) |
| 1000-1499 g | 23 (32.9%) | 24 (36.4%) |
| ≥1500 g | 37 (52.9%) | 37 (56.1%) |
| Weight for age | ||
| AGA or LGA | 65 (92.9%) | 58 (87.9%) |
| SGA | 5 (7.1%) | 8 (12.1%) |
| Multiple gestation | 29 (41.4%) | 22 (33.3%) |
| Gender | ||
| Male | 43 (61.4%) | 40 (60.6%) |
| Female | 27 (38.6%) | 26 (39.4%) |
| Maternal hypertension | 14 (20.0%) | 17 (25.8%) |
| Maternal diabetes | 8 (11.4%) | 7 (10.6%) |
| Maternal fever | 8 (11.4%) | 7 (10.6%) |
| Umbilical artery doppler changes (A/REDF) | 3 (4.3%) | 9 (13.6%) |
| Antenatal steroids | ||
| Complete | 33 (47.1%) | 34 (51.5%) |
| Incomplete | 22 (31.4%) | 23 (34.8%) |
| Not Received | 15 (21.4%) | 9 (13.6%) |
| Deferred cord clamping ≥60 sec | 33 (47.1%) | 32 (48.5%) |
| Mode of delivery | ||
| LSCS | 58 (82.9%) | 60 (90.9%) |
| VD | 12 (17.1%) | 6 (9.1%) |
| Any resuscitation required | 9 (12.9%) | 8 (12.1%) |
| Total parenteral nutrition requirement on day 1 | 16 (22.9%) | 14 (21.2%) |
| Time of Initiation of Enteral Nutrition (h) | 2.0 [2.0, 2.0] | 2.0 [1.0, 2.0] |
| MoM on Day 7 (%) | 100 [65, 100] | 100 [80, 100] |
| Abbreviations: AGA, appropriate for gestational age; A/REDF, absent or reversal of flow in the umbilical artery; C, Celsius; cm, centimetres; g, grams; h, hours; LGA, large for gestational age; LSCS, lower segment caesarean section; MoM, mother’s own milk; sec, seconds; SGA, small for gestational age; VD, vaginal delivery; w, weeks | ||
| Anthropometric parameter* | MD (95% CI) (Plant HMF (n=66) vs. Bovine HMF (n=70)) | p-value |
| Rate of weight gain (g/Kg/d) | ||
| Enrolment until discharge | 3.20 (-0.33, 6.73) | 0.08 |
| Enrolment until 40 w PMA | 0.13 (-0.84, 1.09) | 0.80 |
| Length increment (cm/w) | ||
| Enrolment until discharge | 0.11 (-0.24, 0.46) | 0.53 |
| Enrolment until 40w PMA | -0.02 (-0.13, 0.08) | 0.65 |
| HC increment (cm/w) | ||
| Enrolment until discharge | -0.03 (-0.15, 0.09) | 0.63 |
| Enrolment until 40w PMA | -0.02 (-0.20, 0.16) | 0.83 |
| Anthropometric parameter*+ | aMD (95% CI) | p-value |
| Rate of weight gain (g/Kg/d) | ||
| Enrolment until discharge | 3.20 (0.46, 5.95) | 0.02 |
| Enrolment until 40w PMA | 0.03 (-0.85, 0.92) | 0.95 |
| Length increment (cm/w) | ||
| Enrolment until discharge | 0.11 (-0.24, 0.46) | 0.54 |
| Enrolment until 40w PMA | -0.02 (-0.15, 0.10) | 0.75 |
| HC increment (cm/w) | ||
| Enrolment until discharge | -0.02 (-0.13, 0.09) | 0.72 |
| Enrolment until 40w PMA | -0.02 (-0.12, 0.09) | 0.71 |
|
Abbreviations: aMD, adjusted mean difference; CI, confidence interval; cm, centimetres; d, day; g, grams; HC, head circumference; HMF, human milk fortifier; Kg, kilograms; MD, mean difference; w, week *Intention-To-Treat analyses +Multivariable linear regression analyses, adjusted for gestational age, birth weight, receipt of antenatal corticosteroids, antenatal doppler abnormalities | ||
| Outcome variables | Bovine HMF (n=70) | Plant HMF (n=66) | aMD/aRR*+ (95% CI) (Plant HMF vs. Bovine HMF) | aRD (95% CI)*+ (Plant HMF vs. Bovine HMF) | p-value |
| Rate of weight gain (g/Kg/d) | |||||
| Birth until discharge | 1.59 [-7.10, 8.29] | 2.49 [-1.00, 8.17] | 3.15 (-0.17, 6.48) | NA | 0.06 |
| Birth until 40w PMA | 10.49 [8.91, 12.09] | 10.32 [8.88, 11.74] | 0.05 (-0.80, 0.90) | NA | 0.91 |
| Day of regaining BW until 40w PMA | 13.12 [11.39, 14.58] | 12.70 [11.21, 14.97] | -0.24 (-1.58, 1.09) | NA | 0.72 |
| Discharge until 40w PMA | 12.58 [11.04, 15.04] | 12.25 [10.78, 14.71] | -0.08 (-1.18, 1.02) | NA | 0.89 |
| Days to regain BW | 12.00 [10.00, 14.00] | 13.08 [9.00, 15.98] | 1.40 (-1.30, 4.09) | NA | 0.31 |
| No. of feed intolerance days | 0.00 [0.00, 0.01] | 0.00 [0.00, 0.01] | 0.22 (-0.31, 0.75) | NA | 0.41 |
| Duration of hospital stay (d) | 14.00 [7.00, 28.00] | 14.00 [9.00, 24.00] | -2.61 (-9.11, 3.89) | NA | 0.43 |
| Receipt of RBC transfusion | 11.4 (16.2%) | 10.8 (16.4%) | 1.01 (0.43, 2.36) | 0.17 (-12.61, 12.94) | 0.98 |
| NEC (≥Stage 2) | 2.1 (3.0%) | 3.0 (4.6%) | 1.56 (0.26, 9.56) | 1.63 (-4.97, 8.24) | 0.63 |
| LONS | 22.1 (31.6%) | 20.0 (30.3%) | 0.96 (0.52, 1.78) | -1.33 (-17.41, 14.76) | 0.89 |
| BPD | 5.1 (7.3%) | 7.1 (10.8%) | 1.48 (0.47, 4.71) | 3.50 (-6.34, 13.34) | 0.50 |
| ROP requiring intervention | 13.4 (19.2%) | 8.8 (13.3%) | 0.69 (0.29, 1.66) | -5.87 (-18.64, 6.90) | 0.41 |
| MBD | 12.3 (17.6%) | 14.7 (22.2%) | 1.26 (0.58, 2.74) | 4.64 (-9.12, 18.40) | 0.55 |
| EUGR at 40w PMA | 9.7 (13.9%) | 11.3 (17.2%) | 1.24 (0.52, 3.00) | 3.32 (-9.23, 15.88) | 0.63 |
| Mortality | 2/70 (2.9%) | 3/66 (4.5%) | 1.59 (0.27, 9.22) | 1.69 (-4.67, 8.05) | 0.67 |
| Mortality or LTFU | 12/70 (17.1%) | 11/66 (16.7%) | 0.97 (0.46, 2.05) | -0.48 (-13.08, 12.13) | 1.00 |
|
Abbreviations: BPD, bronchopulmonary dysplasia; CI, confidence interval; EUGR: extra uterine growth restriction; HMF, human milk fortifier; IQR, interquartile range; LONS, late onset neonatal sepsis; LTFU, lost to follow-up; MBD, metabolic bone disease; aMD, adjusted mean difference; NA, not applicable; NEC, necrotizing enterocolitis; PMA: post-menstrual age; RBC, red blood cell; aRD, adjusted risk difference; aRR, adjusted risk ratio; ROP, retinopathy of prematurity; SD, standard deviation. *Intention-To-Treat analyses +Multivariable linear regression (continuous variables) and modified poisson regression with robust error variance (categorical variables) analyses, adjusted for gestational age, birth weight, receipt of antenatal corticosteroids, antenatal doppler abnormalities | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
