Submitted:
09 February 2026
Posted:
10 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Multimodality Imaging in the Context of Ventricular Tachycardia Ablation
2.1. Echocardiography in Ventricular Tachycardia Ablation: Current Applications
2.2. Cardiac Magnetic Resonance in Ventricular Tachycardia Ablation: Current Applications
2.3. Cardiac Computed Tomography CT in Ventricular Tachycardia Ablation: Current Applications
2.4. Nuclear Imaging (PET/SPECT) in Ventricular Tachycardia Ablation: Current Applications
3. Imaging Integration with Electroanatomical Mapping in Ventricular Tachycardia Ablation: Current Applications
4. Imaging-Facilitated VT Ablation: Current Evidence, Practical Limitations, and Future Directions
4.1. Real-World Evidence Supporting Imaging-Facilitated Workflows
4.2. Current Methodological and Practical Limitations of Imaging Integration
4.3. Future Challenges and Emerging Paradigms
5. Conclusions
Abbreviations
| VT | Ventricular tachycardia |
| ICD | Implantable cardioverter-defibrillator |
| EAM | Electroanatomical mapping (o electroanatomic mapping) |
| CMR | Cardiac magnetic resonance |
| LGE | Late gadolinium enhancement |
| CT / CCTA | Computed tomography / Coronary CT angiography |
| PET | Positron emission tomography |
| SPECT | Single-photon emission computed tomography |
| PSI | Pixel signal intensity (PSI maps) |
| TTE | Transthoracic echocardiography |
| TEE | Transesophageal echocardiography |
| ICE | Intracardiac echocardiography |
| FDG | (18)F-fluorodeoxyglucose (FDG-PET tracer) |
| 123I-mIBG | (123)I-metaiodobenzylguanidine (SPECT tracer) |
| LIE-CT / DE-CT | Late iodine enhancement / Delayed enhancement CT |
| LVEF | Left ventricular ejection fraction |
| LVEDV / LVESV | Left ventricular end-diastolic / end-systolic volume |
| RVEF | Right ventricular ejection fraction |
| WMA | Wall motion abnormalities |
| GLS | Global longitudinal strain |
| RF | Radiofrequency |
| BSSFP | Balanced steady-state free precession |
| IR-GRE | Inversion-recovery gradient-echo |
| PSIR | Phase-sensitive inversion recovery |
| MOCO | Motion correction (free-breathing LGE MOCO) |
| T1 / T2 / ECV | T1 mapping / T2 mapping / Extracellular volume |
| CIEDs | Cardiac implantable electronic devices |
| LAVA | Local abnormal ventricular activities |
| DEEP | Decrement-evoked potentials |
| EGM | Electrogram (EGM/EGMs) |
| STAR / SBRT | Stereotactic arrhythmia radioablation / Stereotactic body radiotherapy |
| AI | Artificial intelligence |
| SUV | Standardized uptake value |
| H/M ratio | Heart-to-mediastinum ratio (nel 123I-mIBG) |
References
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Cronin, E.M.; Bogun, F.M.; Maury, P.; Peichl, P.; Chen, M.; Namboodiri, N.; Aguinaga, L.; Leite, L.R.; Al-Khatib, S.M.; Anter, E.; et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace 2019, 21, 1143–1144. [Google Scholar] [CrossRef]
- Sapp, J.L.; Wells, G.A.; Parkash, R.; Stevenson, W.G.; Blier, L.; Sarrazin, J.F.; Thibault, B.; Rivard, L.; Gula, L.; Leong-Sit, P.; et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N. Engl. J. Med. 2016, 375, 111–121. [Google Scholar] [CrossRef]
- Chery, G.; Khoshknab, M.; Nazarian, S. Imaging to facilitate ventricular tachycardia ablation: Intracardiac echocardiography, computed tomography, magnetic resonance, and positron emission tomography. JACC Clin. Electrophysiol. 2024, 10, 2277–2292. [Google Scholar] [CrossRef]
- Hendriks, A.A.; Kis, Z.; Glisic, M.; Bramer, W.M.; Szili-Torok, T. Pre-procedural image-guided versus non-image-guided ventricular tachycardia ablation-a review. Neth. Heart J. 2020, 28, 573–583. [Google Scholar] [CrossRef]
- Penela, D.; Falasconi, G.; Soto-Iglesias, D.; Fernández-Armenta, J.; Zucchelli, G.; Bisbal, F.; Zaraket, F.; Silva, E.; Parollo, M.; Latini, A.C.; et al. Outcomes of ventricular tachycardia ablation facilitated by pre-procedural cardiac imaging-derived scar characterization: a prospective multi-centre international registry. Europace 2025, 27. [Google Scholar] [CrossRef]
- Lilli, A.; Parollo, M.; Mazzocchetti, L.; De Sensi, F.; Rossi, A.; Notarstefano, P.; Santoro, A.; Aquaro, G.D.; Cresti, A.; Lapira, F.; et al. Ventricular tachycardia ablation guided or aided by scar characterization with cardiac magnetic resonance: rationale and design of VOYAGE study. BMC Cardiovasc. Disord. 2022, 22, 169. [Google Scholar] [CrossRef] [PubMed]
- Di Cori, A.; Pistelli, L.; Parollo, M.; Zaurino, N.; Segreti, L.; Zucchelli, G. Approaching ventricular tachycardia ablation in 2024: An update on mapping and ablation strategies, timing, and future directions. J. Clin. Med. 2024, 13, 5017. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.D.; Mann, R.D.; Kristenson, S.D.; Buck, R.M.; Mendoza, J.D.; Reese, J.M.; Grant, D.W.; Roberge, E.A. Transthoracic echocardiography: Beginner’s guide with emphasis on blind spots as identified with CT and MRI. Radiographics 2021, 41, 1022–1042. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Barkagan, M.; Leshem, E.; Shapira-Daniels, A.; Sroubek, J.; Buxton, A.E.; Saffitz, J.E.; Anter, E. Histopathological characterization of radiofrequency ablation in ventricular scar tissue. JACC Clin. Electrophysiol. 2019, 5, 920–931. [Google Scholar] [CrossRef]
- Calkins, H.; Epstein, A.; Packer, D.; Arria, A.M.; Hummel, J.; Gilligan, D.M.; Trusso, J.; Carlson, M.; Luceri, R.; Kopelman, H.; et al. Catheter ablation of ventricular tachycardia in patients with structural heart disease using cooled radiofrequency energy. J. Am. Coll. Cardiol. 2000, 35, 1905–1914. [Google Scholar] [CrossRef]
- Segal, O.R.; Chow, A.W.C.; Markides, V.; Schilling, R.J.; Peters, N.S.; Davies, D.W. Long-term results after ablation of infarct-related ventricular tachycardia. Heart Rhythm 2005, 2, 474–482. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, P.A.; Poloniecki, J.; Sosa-Suarez, G.; Ruskin, J.N.; McGovern, B.A.; Garan, H. Long-term clinical outcome of patients with prior myocardial infarction after palliative radiofrequency catheter ablation for frequent ventricular tachycardia. Am. J. Cardiol. 2001, 87, 975–979. [Google Scholar] [CrossRef]
- Santangeli, P.; Muser, D.; Zado, E.S.; Magnani, S.; Khetpal, S.; Hutchinson, M.D.; Supple, G.; Frankel, D.S.; Garcia, F.C.; Bala, R.; et al. Acute hemodynamic decompensation during catheter ablation of scar-related ventricular tachycardia: incidence, predictors, and impact on mortality. Circ. Arrhythm. Electrophysiol. 2015, 8, 68–75. [Google Scholar] [CrossRef]
- Santangeli, P.; Frankel, D.S.; Tung, R.; Vaseghi, M.; Sauer, W.H.; Tzou, W.S.; Mathuria, N.; Nakahara, S.; Dickfeldt, T.M.; Lakkireddy, D.; et al. Early mortality after catheter ablation of ventricular tachycardia in patients with structural heart disease. J. Am. Coll. Cardiol. 2017, 69, 2105–2115. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.H.; Maisel, W.H.; Ho, C.; Suzuki, M.; Soejima, K.; Solomon, S.; Stevenson, W.G. Effect of radiofrequency catheter ablation of ventricular tachycardia on left ventricular function in patients with prior myocardial infarction. J. Interv. Card. Electrophysiol. 2002, 7, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Turnbull, S.; De Silva, K.; Bhaskaran, A.; Bennett, R.G.; Campbell, T.G.; Thomas, L.; Kumar, S. Impact of catheter ablation for ventricular tachycardia on left ventricular ejection fraction in patients with structural heart disease. J. Arrhythm. 2025, 41, e70042. [Google Scholar] [CrossRef]
- Ezzeddine, F.M.; Davis, N.E.; Asirvatham, S.J.; Bois, J.P.; Chang, I.C.; Deshmukh, A.; Friedman, P.A.; Giudicessi, J.; Kapa, S.; Kowlgi, G.G.; et al. Cardiac function after catheter ablation of ventricular arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. Open 2025, 5, oeaf049. [Google Scholar] [CrossRef]
- Surkova, E.; Muraru, D.; Genovese, D.; Aruta, P.; Palermo, C.; Badano, L.P. Relative prognostic importance of left and right ventricular ejection fraction in patients with cardiac diseases. J. Am. Soc. Echocardiogr. 2019, 32, 1407–1415.e3. [Google Scholar] [CrossRef]
- Leftheriotis, D.; Flevari, P.; Stassinos, V.; Ikonomidis, I. Transthoracic 3D echocardiography used as a low-cost and precise technique to facilitate ablation of ventricular tachycardia from the left posteromedial papillary muscle. Hellenic J. Cardiol. 2019, 60, 261–263. [Google Scholar] [CrossRef]
- Mirzeyeva, G.; Heukäufer, M.; Janschel, S.; Schneppe, D.; Ebrahimi, R.; Dörr, M.; Kiuchi, M.G.; Futyma, P.; Martinek, M.; Pürerfellner, H.; et al. 3D map combined with transthoracic echocardiography for ablation of premature ventricular contractions/ventricular arrhythmia from papillary muscle: A technical report. J. Clin. Med. 2024, 13, 6358. [Google Scholar] [CrossRef]
- Haugaa, K.H.; Smedsrud, M.K.; Steen, T.; Kongsgaard, E.; Loennechen, j.P.; Skjaerpe, T.; Voigt, J.U.; Willems, R.; Smith, G.; Smiseth, O.A.; et al. Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. [CrossRef]
- Trivedi, S.J.; Bennett, R.G.; Byth, K.; Campbell, T.; Turnbull, S.; Stefani, L.; Kumar, S.; Thomas, L. Speckle-tracking echocardiography parameters associated with ventricular arrhythmia recurrence-free survival after ablation in structural heart disease. J. Am. Soc. Echocardiogr. 2025, 38, 820–831. [Google Scholar] [CrossRef]
- Guerra, F.; Malagoli, A.; Contadini, D.; Baiocco, E.; Menditto, A.; Bonelli, P.; Rossi, L.; Sticozzi, C.; Zanni, A.; Cai, J.; et al. Global longitudinal strain as a predictor of first and subsequent arrhythmic events in remotely monitored ICD patients with structural heart disease. JACC Cardiovasc. Imaging 2020, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, S.J.; Campbell, T.; Stefani, L.; Kumar, S.; Thomas, L. Speckle-tracking strain echocardiography in the assessment of myocardial mechanics in patients with idiopathic ventricular arrhythmias: A longitudinal follow-up study. Circ. Arrhythm. Electrophysiol. 2020, 13, e008748. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, S.J.; Campbell, T.; Davey, C.J.; Stefani, L.; Thomas, L.; Kumar, S. Longitudinal strain with speckle-tracking echocardiography predicts electroanatomic substrate for ventricular tachycardia in nonischemic cardiomyopathy patients. Heart Rhythm O2 2022, 3, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Saxon, L.A.; Stevenson, W.G.; Fonarow, G.C.; Middlekauff, H.R.; Yeatman, L.A.; Sherman, C.T.; Child, J.S. Transesophageal echocardiography during radiofrequency catheter ablation of ventricular tachycardia. Am. J. Cardiol. 1993, 72, 658–661. [Google Scholar] [CrossRef]
- Bunch, T.J.; Weiss, J.P.; Crandall, B.G.; Day, J.D.; DiMarco, J.P.; Ferguson, J.D.; Mason, P.K.; McDaniel, G.; Osborn, J.S.; Wiggins, D.; et al. Image integration using intracardiac ultrasound and 3D reconstruction for scar mapping and ablation of ventricular tachycardia. J. Cardiovasc. Electrophysiol. 2010, 21, 678–684. [Google Scholar] [CrossRef]
- Proietti, R.; Rivera, S.; Dussault, C.; Essebag, V.; Bernier, M.L.; Ayala-Paredes, F.; Badra-Verdu, M.; Roux, J.F. Intracardiac echo-facilitated 3D electroanatomical mapping of ventricular arrhythmias from the papillary muscles: assessing the ‘fourth dimension’ during ablation. Europace 2016, euw099. [Google Scholar] [CrossRef]
- Rivera, S.; de la Paz Ricapito, M.; Espinoza, J.; Belardi, D.; Albina, G.; Giniger, A.; Roux, J.F.; Ayala-Paredes, F.; Scazzuso, F. Cryoablation for ventricular arrhythmias arising from the papillary muscles of the left ventricle guided by intracardiac echocardiography and image integration. JACC Clin. Electrophysiol. 2015, 1, 509–516. [Google Scholar] [CrossRef]
- Rivera, S.; Ricapito, M.d.l.P.; Tomas, L.; Parodi, J.; Bardera Molina, G.; Banega, R.; Bueti, P.; Orosco, A.; Reinoso, M.; Caro, M.; et al. Results of cryoenergy and radiofrequency-based catheter ablation for treating ventricular arrhythmias arising from the papillary muscles of the left ventricle, guided by intracardiac echocardiography and image integration. Circ. Arrhythm. Electrophysiol. 2016, 9, e003874. [Google Scholar] [CrossRef]
- Kanawati, J.; De Silva, K.; Bhaskaran, A.; Turnbull, S.; Zhou, J.; Kotake, Y.; Kumar, S.; Campbell, T. Intracardiac echocardiography techniques to identify ventricular arrhythmia substrate. Heart Rhythm O2 2022, 3, 602–612. [Google Scholar] [CrossRef]
- Qian, P.C.; Tedrow, U.B. Intracardiac echocardiography to guide catheter ablation of ventricular arrhythmias in ischemic cardiomyopathy. Card. Electrophysiol. Clin. 2021, 13, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Simkowski, J.; Eck, B.; Tang, W.H.W.; Nguyen, C.; Kwon, D.H. Next-generation cardiac magnetic resonance imaging techniques for characterization of myocardial disease. Curr. Treat. Options Cardiovasc. Med. 2024, 26, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Barison, A.; Timoteo, A.T.; Liga, R.; Borodzicz-Jazdzyk, S.; El Messaoudi, S.; Luong, C.; Mandoli, G.E.; Moscatelli, S.; Ramkisoensing, A.A.; Moharem-Elgamal, S.; et al. Cardiovascular imaging research and innovation in 2023. Eur. Heart J. Imaging Methods Pract. 2024, 2, qyae029. [Google Scholar] [CrossRef]
- Dickfeld, T.; Tian, J.; Ahmad, G.; Jimenez, A.; Turgeman, A.; Kuk, R.; Peters, M.; Saliaris, A.; Saba, M.; Shorofsky, S.; et al. MRI-Guided ventricular tachycardia ablation: integration of late gadolinium-enhanced 3D scar in patients with implantable cardioverter-defibrillators. Circ. Arrhythm. Electrophysiol. 2011, 4, 172–184. [Google Scholar] [CrossRef]
- Sour, A.; Jenni, S.; Ortí-Suárez, A.; Schmitt, J.; Heitz, V.; Bolze, F.; Loureiro de Sousa, P.; Po, C.; Bonnet, C.S.; Pallier, A.; et al. Four gadolinium(III) complexes appended to a porphyrin: A water-soluble molecular theranostic agent with remarkable relaxivity suited for MRI tracking of the photosensitizer. Inorg. Chem. 2016, 55, 4545–4554. [Google Scholar] [CrossRef]
- Mahida, S.; Sacher, F.; Dubois, R.; Sermesant, M.; Bogun, F.; Haïssaguerre, M.; Jaïs, P.; Cochet, H. Cardiac imaging in patients with ventricular tachycardia. Circulation 2017, 136, 2491–2507. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.M.; Barkhausen, J.; Bucciarelli-Ducci, C.; Flamm, S.D.; Kim, R.J.; Nagel, E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 17. [Google Scholar] [CrossRef]
- Andreu, D.; Ortiz-Pérez, J.T.; Fernández-Armenta, J.; Guiu, E.; Acosta, J.; Prat-González, S.; De Caralt, T.M.; Perea, R.J.; Garrido, C.; Mont, L.; et al. 3D delayed-enhanced magnetic resonance sequences improve conducting channel delineation prior to ventricular tachycardia ablation. Europace 2015, 17, 938–945. [Google Scholar] [CrossRef]
- Yan, C.; Hu, J.; Li, Y.; Xie, X.; Zou, Z.; Deng, Q.; Zhou, X.; Bi, X.; Zeng, M.; Liu, J. Motion-corrected free-breathing late gadolinium enhancement combined with a gadolinium contrast agent with a high relaxation rate: an optimized cardiovascular magnetic resonance examination protocol. [CrossRef]
- Yang, K.; Cui, C.; Teng, F.; Yin, G.; An, J.; Yang, X.; Li, J.; Bi, X.; Pang, J.; Chow, K.; et al. Full free-breathing cardiovascular magnetic resonance imaging: enhancing efficiency and image quality in clinical practice. J. Cardiovasc. Magn. Reson. 2025, 27, 101955. [Google Scholar] [CrossRef]
- Holtackers, R.J.; Van De Heyning, C.M.; Chiribiri, A.; Wildberger, J.E.; Botnar, R.M.; Kooi, M.E. Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar: a review of current techniques. J. Cardiovasc. Magn. Reson. 2021, 23, 96. [Google Scholar] [CrossRef]
- Andreu, D.; Berruezo, A.; Ortiz-Pérez, J.T.; Silva, E.; Mont, L.; Borràs, R.; de Caralt, T. Integration of 3D electroanatomic maps and magnetic resonance scar characterization into the navigation system to guide ventricular tachycardia ablation. [CrossRef]
- Soto-Iglesias, D.; Penela, D.; Jáuregui, B.; Acosta, J.; Fernández-Armenta, J.; Linhart, M.; Zucchelli, G.; Syrovnev, V.; Zaraket, F.; Terés, C.; et al. Cardiac magnetic resonance-guided ventricular tachycardia substrate ablation. JACC Clin. Electrophysiol. 2020, 6, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Armenta, J.; Berruezo, A.; Andreu, D.; Camara, O.; Silva, E.; Serra, L.; Barbarito, V.; Carotenutto, L.; Evertz, R.; Ortiz-Pérez, J.T.; et al. Three-dimensional architecture of scar and conducting channels based on high resolution ce-CMR: insights for ventricular tachycardia ablation. [CrossRef] [PubMed]
- Burger, J.C.; Hopman, L.H.G.A.; Kemme, M.J.B.; Hoeksema, W.; Takx, R.A.P.; Figueras I Ventura, R.M.; Campos, F.O.; Plank, G.; Planken, R.N.; Allaart, C.P.; et al. Optimizing ventricular tachycardia ablation through imaging-based assessment of arrhythmic substrate: A comprehensive review and roadmap for the future. Heart Rhythm O2 2024, 5, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Englert, F.; Bahlke, F.; Erhard, N.; Krafft, H.; Popa, M.A.; Risse, E.; Lennerz, C.; Lengauer, S.; Telishevska, M.; Reents, T.; et al. VT ablation based on CT imaging substrate visualization: results from a large cohort of ischemic and non-ischemic cardiomyopathy patients. Clin. Res. Cardiol. 2024, 113, 1478–1484. [Google Scholar] [CrossRef]
- Arya, A.; Di Biase, L.; Bazán, V.; Berruezo, A.; d’Avila, A.; Della Bella, P.; Enriquez, A.; Hocini, M.; Kautzner, J.; Pak, H.N.; et al. Epicardial ventricular arrhythmia ablation: a clinical consensus statement of the European Heart Rhythm Association of the European Society of Cardiology and the Heart Rhythm Society, the Asian Pacific Heart Rhythm Society, the Latin American Heart Rhythm Society, and the Canadian Heart Rhythm Society. Europace 2025, 27. [Google Scholar]
- Maher, T.R.; Freedman, B.L.; Locke, A.H.; Tracey, M.; Waks, J.W.; Litmanovich, D.; d’Avila, A. Correlation between functional substrate mapping and cardiac computed tomography-derived wall thinning for ventricular tachycardia ablation. JACC Clin. Electrophysiol. 2023, 9, 1878–1889. [Google Scholar] [CrossRef]
- Liu, P.; Lin, L.; Xu, C.; Han, Y.; Lin, X.; Hou, Y.; Lu, X.; Vembar, M.; Jin, Z.; Wang, Y. Quantitative analysis of late iodine enhancement using dual-layer spectral detector computed tomography: comparison with magnetic resonance imaging. Quant. Imaging Med. Surg. 2022, 12, 310–320. [Google Scholar] [CrossRef]
- Gatti, M.; De Filippo, O.; Cura Curà, G.; Dusi, V.; Di Vita, U.; Gallone, G.; Morena, A.; Palmisano, A.; Pasinato, E.; Solano, A.; et al. Diagnostic accuracy of late iodine enhancement on cardiac CT for myocardial tissue characterization: a systematic review and meta-analysis. Eur. Radiol. 2025, 35, 3054–3067. [Google Scholar] [CrossRef]
- van den Bruck. Preprocedural substrate visualization and image integration based on late enhancement computed tomography for ventricular tachycardia ablation in non-ischemic cardiomyopathy.
- Xu, L.; Khoshknab, M.; Berger, R.D.; Chrispin, J.; Dixit, S.; Santangeli, P.; Callans, D.; Marchlinski, F.E.; Zimmerman, S.L.; Han, Y.; et al. Lipomatous metaplasia enables Ventricular Tachycardia by reducing current loss within the protected corridor. JACC Clin. Electrophysiol. 2022, 8, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zahid, S.; Khoshknab, M.; Moss, J.; Berger, R.D.; Chrispin, J.; Callans, D.; Marchlinski, F.E.; Zimmerman, S.L.; Han, Y.; et al. Lipomatous metaplasia facilitates slow conduction in critical Ventricular Tachycardia corridors within postinfarct myocardium. JACC Clin. Electrophysiol. 2023, 9, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Khoshknab, M.; Moss, J.; Berger, R.D.; Chrispin, J.; Callans, D.; Marchlinski, F.E.; Zimmerman, S.L.; Han, Y.; Trayanova, N.; et al. Lipomatous metaplasia is associated with ventricular tachycardia recurrence following ablation in patients with nonischemic cardiomyopathy. JACC Clin. Electrophysiol. 2024, 10, 1135–1146. [Google Scholar] [CrossRef]
- Sacristan, B.; Cochet, H.; Bouyer, B.; Tixier, R.; Duchateau, J.; Derval, N.; Pambrun, T.; Arnaud, M.; Charton, J. Imaging-aided VT ablation. Long-term results from a pilot study. [CrossRef]
- Notarstefano, P.; Ciabatti, M.; Marallo, C.; Lazzeri, M.; Fraticelli, A.; Tavanti, V.; Zucchelli, G.; La Camera, A.; Bolognese, L. The role of imaging in ventricular tachycardia ablation. Diagnostics (Basel) 1973, 2025, 15. [Google Scholar] [CrossRef]
- Kuroda, M.; Hiroshima, K.; Ando, K. Epicardial ventricular tachycardia ablation: A contemporary review of indications, techniques, and practical approaches for challenging substrates. Rev. Cardiovasc. Med. 2026, 27. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Vella, C.; Cauti, F.M.; Romano, V.; Gamardella, M.; Ancona, M.B.; Chieffo, A.; Montorfano, M. Iatrogenic acute coronary occlusion during epicardial ventricular tachycardia ablation: when intravascular imaging guides the management-a case report. Eur. Heart J. Case Rep. 2025, 9, ytaf358. [Google Scholar] [CrossRef]
- Lameka, K.; Farwell, M.D.; Ichise, M. Positron emission tomography. In Handbook of Clinical Neurology; Handbook of Clinical Neurology; Elsevier, 2016; pp. 209–227. [Google Scholar]
- Al Taii, H.; Saxena, R.; Morcos, R.; Al-Shammari, A.S.; Farhat, K.; Al Sakini, A.S.; Al-Wssawi, A.; Gaalema, D.; Naraynan, A.; Sabayon, D.; et al. Outcomes of catheter ablation in cardiac sarcoidosis patients with ventricular tachycardia: a propensity score-matched retrospective analysis. J. Interv. Card. Electrophysiol. 2025, 68, 1171–1177. [Google Scholar] [CrossRef]
- Hashimoto, K.; Turnbull, S.; Bickley, M.; Bhaskaran, A.; Huang, K.; De Silva, K.; Kumar, S. Clinical outcomes after catheter ablation in cardiac sarcoidosis and idiopathic nonischemic cardiomyopathy. J. Cardiovasc. Electrophysiol. 2025, 36, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- Dickfeld, T.; Lei, P.; Dilsizian, V.; Jeudy, J.; Dong, J. Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography. [CrossRef] [PubMed]
- Fahmy, T.S.; Wazni, O.M.; Jaber, W.A.; Walimbe, V.; Di Biase, L.; Elayi, C.S.; DiFilippo, F.P.; Young, R.B.; Patel, D.; Riedlbauchova, L.; et al. Integration of positron emission tomography/computed tomography with electroanatomical mapping: a novel approach for ablation of scar-related ventricular tachycardia. Heart Rhythm 2008, 5, 1538–1545. [Google Scholar] [CrossRef]
- Ghzally, Y.; Imanli, H.; Smith, M.; Mahat, J.; Chen, W.; Jimenez, A.; Sawan, M.A.; Abdelmegid, M.A.K.F.; Helmy, H.A.E.R.; Demitry, S.; et al. Metabolic scar assessment with18F-FDG PET: Correlation to ischemic ventricular tachycardia substrate and successful ablation sites. J. Nucl. Med. 2021, 62, 1591–1598. [Google Scholar] [CrossRef]
- Tian, J.; Smith, M.F.; Ahmad, G.; Dilsizian, V.; Jimenez, A.; Dickfeld, T. Integration of 3-dimensional scar models from SPECT to guide ventricular tachycardia ablation. J. Nucl. Med. 2012, 53, 894–901. [Google Scholar] [CrossRef]
- Thibault, B.; Richer, L.P.; McSpadden, L.C.; Ryu, K.; Aguilar, M.; Cadrin-Tourigny, J.; Tadros, R.; Mondésert, B.; Rivard, L.; Dyrda, K.; et al. Integration of 3D nuclear imaging in 3D mapping system for ventricular tachycardia ablation in patients with implanted devices: Perfusion/voltage retrospective assessment of scar location. Heart Rhythm O2 2022, 3, 560–567. [Google Scholar] [CrossRef]
- Klein, T.; Abdulghani, M.; Smith, M.; Huang, R.; Asoglu, R.; Remo, B.F.; Turgeman, A.; Mesubi, O.; Sidhu, S.; Synowski, S.; et al. Three-dimensional 123I-meta-iodobenzylguanidine cardiac innervation maps to assess substrate and successful ablation sites for ventricular tachycardia: feasibility study for a novel paradigm of innervation imaging. Circ. Arrhythm. Electrophysiol. 2015, 8, 583–591. [Google Scholar] [CrossRef]
- Josephson, M.E.; Anter, E. Substrate mapping for ventricular tachycardia: Assumptions and misconceptions. JACC Clin. Electrophysiol. 2015, 1, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, M.; Atreya, A.R.; Saggu, D.K.; Yalagudri, S.; Calambur, N. Catheter ablation of ventricular tachycardia: strategies to improve outcomes. Front. Cardiovasc. Med. 2023, 10, 966634. [Google Scholar] [CrossRef]
- Hawson, J.; Al-Kaisey, A.; Anderson, R.D.; Watts, T.; Morton, J.; Kumar, S.; Kistler, P.; Kalman, J.; Lee, G. Substrate-based approaches in ventricular tachycardia ablation. Indian Pacing Electrophysiol. J. 2022, 22, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Ciaccio, E.J.; Hsia, H.H.; Saluja, D.S.; Garan, H.; Coromilas, J.; Yarmohammadi, H.; Biviano, A.B.; Peters, N.S. Ventricular tachycardia substrate mapping: What’s been done and what needs to be done. Heart Rhythm 2025, 22, 2280–2299. [Google Scholar] [CrossRef] [PubMed]
- Jaïs, P.; Maury, P.; Khairy, P.; Sacher, F.; Nault, I.; Komatsu, Y.; Hocini, M.; Forclaz, A.; Jadidi, A.S.; Weerasooryia, R.; et al. Elimination of local abnormal ventricular activities: a new end point for substrate modification in patients with scar-related ventricular tachycardia. Circulation 2012, 125, 2184–2196. [Google Scholar] [CrossRef] [PubMed]
- Jackson, N.; Gizurarson, S.; Viswanathan, K.; King, B.; Massé, S.; Kusha, M.; Porta-Sanchez, A.; Jacob, J.R.; Khan, F.; Das, M.; et al. Decrement evoked potential mapping: Basis of a mechanistic strategy for ventricular tachycardia ablation. Circ. Arrhythm. Electrophysiol. 2015, 8, 1433–1442. [Google Scholar] [CrossRef]
- Bhaskaran, A.; Fitzgerald, J.; Jackson, N.; Gizurarson, S.; Nanthakumar, K.; Porta-Sánchez, A. Decrement evoked potential mapping to guide ventricular tachycardia ablation: Elucidating the functional substrate. Arrhythm. Electrophysiol. Rev. 2020, 9, 211–218. [Google Scholar] [CrossRef]
- Solimene, F.; Speziale, G.; Schillaci, V.; Stabile, G.; Shopova, G.; Arestia, A.; Salito, A.; D’Auria, C.; Coltorti, F.; De Simone, A.; et al. An annotation-independent algorithm based on electrogram characteristics to guide the identification of ventricular tachycardia isthmuses in patients with structural heart disease. J. Interv. Card. Electrophysiol. 2024, 67, 739–750. [Google Scholar] [CrossRef]
- Igarashi, M.; Nogami, A.; Fukamizu, S.; Sekiguchi, Y.; Nitta, J.; Sakamoto, N.; Sakamoto, Y.; Kurosaki, K.; Takahashi, Y.; Kimata, A.; et al. Acute and long-term results of bipolar radiofrequency catheter ablation of refractory ventricular arrhythmias of deep intramural origin. Heart Rhythm 2020, 17, 1500–1507. [Google Scholar] [CrossRef]
- Roca-Luque, I.; Rivas-Gándara, N.; Francisco-Pascual, J.; Rodriguez-Sanchez, J.; Cuellar-Calabria, H.; Rodriguez-Palomares, J.; García-Del Blanco, B.; Pérez-Rodon, J.; Santos-Ortega, A.; Rosés-Noguer, F.; et al. Preprocedural imaging to guide transcoronary ethanol ablation for refractory septal ventricular tachycardia. J. Cardiovasc. Electrophysiol. 2019, 30, 448–456. [Google Scholar] [CrossRef]
- Yamashita, S.; Sacher, F.; Mahida, S.; Berte, B.; Lim, H.S.; Komatsu, Y.; Amraoui, S.; Denis, A.; Derval, N.; Laurent, F.; et al. Image integration to guide catheter ablation in scar-related ventricular tachycardia. J. Cardiovasc. Electrophysiol. 2016, 27, 699–708. [Google Scholar]
- Deneke, T.; Kutyifa, V.; Hindricks, G.; Sommer, P.; Zeppenfeld, K.; Carbucicchio, C.; Pürerfellner, H.; Heinzel, F.R.; Traykov, V.B.; De Riva, M.; et al. Pre- and post-procedural cardiac imaging (computed tomography and magnetic resonance imaging) in electrophysiology: a clinical consensus statement of the European Heart Rhythm Association and European Association of Cardiovascular Imaging of the European Society of Cardiology. Europace 2024, 26. [Google Scholar]
- Berte, B.; Cochet, H.; Dang, L.; Mahida, S.; Moccetti, F.; Hilfiker, G.; Bondietti, J.; Ruschitzka, F.; Jaïs, P.; Scharf, C.; et al. Image-guided ablation of scar-related ventricular tachycardia: towards a shorter and more predictable procedure. J. Interv. Card. Electrophysiol. 2020, 59, 535–544. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Takahashi, M.; Hata, T.; Kashima, Y.; Usui, F.; Morimoto, H.; Izawa, A.; Takahashi, Y.; Masumoto, J.; Koyama, J. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. [CrossRef]
- Dudzinski, D.M.; Januzzi, J.L., Jr. The evolving medical complexity of the modern cardiac intensive care unit. J. Am. Coll. Cardiol. 2017, 69, 2008–2010. [Google Scholar] [CrossRef]
- Falasconi, G.; Penela, D.; Soto-Iglesias, D.; Francia, P.; Teres, C.; Viveros, D.; Bellido, A.; Alderete, J.; Meca-Santamaria, J.; Franco, P.; et al. Preventive substrate ablation in chronic post-myocardial infarction patients with high-risk scar characteristics for ventricular arrhythmias: rationale and design of PREVENT-VT study. J. Interv. Card. Electrophysiol. 2023, 66, 39–47. [Google Scholar] [CrossRef]
- Santangeli, P.; Marchlinski, F.E. Substrate mapping for unstable ventricular tachycardia. Heart Rhythm 2016, 13, 569–583. [Google Scholar] [CrossRef]
- Mesubi, O.; Ahmad, G.; Jeudy, J.; Jimenez, A.; Kuk, R.; Saliaris, A.; See, V.; Shorofsky, S.; Dickfeld, T. Impact of ICD artifact burden on late gadolinium enhancement cardiac MR imaging in patients undergoing ventricular tachycardia ablation. Pacing Clin. Electrophysiol. 2014, 37, 1274–1283. [Google Scholar] [CrossRef]
- Bhagirath, P.; Campos, F.O.; Costa, C.M.; Wilde, A.A.M.; Prassl, A.J.; Neic, A.; Plank, G.; Rinaldi, C.A.; Götte, M.J.W.; Bishop, M.J. Predicting arrhythmia recurrence following catheter ablation for ventricular tachycardia using late gadolinium enhancement magnetic resonance imaging: Implications of varying scar ranges. Heart Rhythm 2022, 19, 1604–1610. [Google Scholar] [CrossRef]
- Mukherjee, R.K.; Whitaker, J.; Williams, S.E.; Razavi, R.; O’Neill, M.D. Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation. Europace 2018, 20, 1721–1732. [Google Scholar] [CrossRef]
- Canino, G.; Di Costanzo, A.; Salerno, N.; Leo, I.; Cannataro, M.; Guzzi, P.H.; Veltri, P.; Sorrentino, S.; De Rosa, S.; Torella, D. Artificial intelligence in cardiac electrophysiology: A clinically oriented review with engineering primers. Bioengineering (Basel) 2025, 12, 1102. [Google Scholar] [CrossRef]
- Dello Russo, A.; Valeri, Y.; Ciconte, G.; Schiavone, M.; Compagnucci, P.; Di Monaco, A.; Riva, S.; Salerno, R.; Volpato, G.; Cipolletta, L.; et al. AI-assisted 3D intracardiac echocardiography for Pulsed Field Ablation of atrial fibrillation using a novel variable loop circular catheter: A multicenter evaluation. J. Clin. Med. 2025, 14, 7249. [Google Scholar] [CrossRef]
- Di Biase, L.; Zou, F.; Lin, A.N.; Grupposo, V.; Marazzato, J.; Tarantino, N.; Della Rocca, D.; Mohanty, S.; Natale, A.; Alhuarrat, M.A.D.; et al. Feasibility of three-dimensional artificial intelligence algorithm integration with intracardiac echocardiography for left atrial imaging during atrial fibrillation catheter ablation. Europace 2023, 25. [Google Scholar] [CrossRef]
- Akerström, F.; Drca, N.; Jensen-Urstad, M.; Braunschweig, F. Feasibility of a novel algorithm for automated reconstruction of the left atrial anatomy based on intracardiac echocardiography. Pacing Clin. Electrophysiol. 2022, 45, 1288–1294. [Google Scholar] [CrossRef]
- Wang, X.; Dennis, A.; Hesselkilde, E.M.; Saljic, A.; Linz, B.M.; Sattler, S.M.; Williams, J.; Tfelt-Hansen, J.; Jespersen, T.; Chow, A.W.C.; et al. Machine learning approach for automated localization of ventricular tachycardia ablation targets from substrate maps: development and validation in a porcine model. Eur. Heart J. Digit. Health 2025, 6, 645–655. [Google Scholar] [CrossRef]
- Blumenthal, C.J.; Hsue, W.; Chen, T.; Zhang, D.; Brem, E.; Garcia, F.C.; Callans, D.J.; Marchlinski, F.E.; Santangeli, P.; Tschabrunn, C.M. Preclinical experience using 4D intracardiac echocardiography to guide cardiac electrophysiology procedures. J. Cardiovasc. Electrophysiol. 2025, 36, 480–486. [Google Scholar] [CrossRef]
- Qin, D.; Singh, J.P. Digital twins: The future for ventricular tachycardia ablation? Circulation 2025, 151, 534–536. [Google Scholar] [CrossRef]
- Götte, M.J.W.; Hopman, L.H.G.A.; Bhagirath, P.; Kemme, M.J.B.; Nelissen, J.L.; Lindborg, K.; Krafft, A.J.; Sprengers, M.E.S.; Chamuleau, S.A.J.; Allaart, C.P. First-in-human real-time MR-guided ventricular ablation for idiopathic outflow tract premature ventricular complexes. JAMA Cardiol. 2025, 10, 1195–1200. [Google Scholar] [CrossRef]
- Mergen, V.; Reiner, M.F.; Klambauer, K.; Moser, L.J.; Guan, F.; Brunckhorst, C.; Duru, F.; Klotz, E.; Flohr, T.; Ruschitzka, F.; et al. Myocardial characterization using late enhancement photon-counting detector CT in ventricular arrhythmia: comparison with electroanatomical mapping. Insights Imaging 2025, 16, 187. [Google Scholar] [CrossRef]
- Carbucicchio, C.; Jereczek-Fossa, B.A.; Andreini, D.; Catto, V.; Piperno, G.; Conte, E.; Cattani, F.; Rondi, E.; Vigorito, S.; Piccolo, C.; et al. STRA-MI-VT (STereotactic RadioAblation by Multimodal Imaging for Ventricular Tachycardia): rationale and design of an Italian experimental prospective study. J. Interv. Card. Electrophysiol. 2021, 61, 583–593. [Google Scholar] [CrossRef]
| Modality | Pre-procedural Role | Intra-procedural Role | Post-procedural Role |
|---|---|---|---|
| TTE (2D/3D) | Assess biventricular function and volumes; identify structural comorbidities | Support anatomical orientation in selected cases | Monitor function and remodeling |
| Strain (speckle-tracking) | Characterize subclinical dysfunction; assess regional mechanics/dyssynchrony | – | Stratify risk and monitor recovery/deterioration |
| TEE | Selected: exclude thrombi; evaluate anatomy if indicated | Monitor RF in selected scenarios; control position; indirect signs of complications | Selected: assess complications if clinical suspicion |
| ICE | – (possible planning if already available) | Guide access and navigation; optimize contact/stability; recognize early complications | Evaluate immediate complications (e.g., pericardium) if symptomatic |
| CMR cine | Define phenotype; quantify function and remodeling; identify aneurysms | Provide anatomical-functional roadmap (indirect) | Reassess function and remodeling; support redo |
| CMR-LGE (± PSI maps) | Segment 3D scar; distinguish core/border zone; identify conducting channels | Integrate model into EAM; focus mapping; support CMR-aided/guided strategies | Reassess substrate in recurrence; plan targeted redo |
| CMR T1/T2 mapping (± ECV) | Characterize diffuse/infiltrative fibrosis; identify edema/inflammation | – | Distinguish edema vs fibrosis in early follow-up |
| Cardiac CT / CCTA | 3D anatomy reconstruction; coronary evaluation; thickness; epicardial fat | Integrate geometry for navigation and safety; epicardial planning | Problem-oriented use for complications; anatomical updates |
| LIE-/DE-CT | Identify scar/border zone as an alternative or complement to CMR | Integrate scar model in EAM (selected centers) | – |
| FDG-PET | Phenotype inflammatory substrate; guide timing and therapy | Integrate 3D maps (if available) to focus on active regions | Monitor activity and therapeutic response; reassess recurrences |
| SPECT perfusion | Estimate perfusion/scar when CMR/CT not feasible | Integrate perfusion/scar model (less frequent) | Selected follow-up |
| 123I-mIBG SPECT | Assess sympathetic denervation (selected centers) | – | Selected follow-up |
| Modality | Output for EAM/strategy | Endpoints/metrics (examples) |
|---|---|---|
| TTE (2D/3D) | Define functional baseline; support risk stratification and timing | LVEF; LVEDV/LVESV; RVEF (if possible); 3D volumes; WMA |
| Strain (speckle-tracking) | Suggest regions of dysfunction compatible with substrate | GLS; regional strain; temporal dispersion (dyssynchrony indices) |
| TEE | Enhance safety in high-risk settings | Presence of thrombi; indirect parameters of overheating/complications; effusion |
| ICE | Improve EAM geometry; facilitate mapping; reduce fluoroscopy | Catheter-tissue contact (qualitative); distance from critical structures; effusion |
| CMR cine | Inform endo/epi choice and mapping priorities | LVEF/RVEF; volumes; wall thickness; WMA; aneurysm |
| CMR-LGE (± PSI maps) | Reduce blind mapping; direct targets; recognize reach-problem | Scar extent; transmurality; gray zone; channels/isthmuses |
| CMR T1/T2 mapping (± ECV) | Contextualize substrates in NICM/active conditions; support timing | T1 native; T2; ECV; edema burden |
| Cardiac CT / CCTA | Bind lesions; interpret low voltages (fat vs scar) | Distance from coronaries; epicardial fat; wall thinning; calcifications |
| LIE-/DE-CT | Increase detection of intramural/epicardial components | Extent delayed iodine enhancement; scar/border zone volume |
| FDG-PET | Distinguish active inflammation vs quiescent scar | Uptake pattern; SUV; perfusion mismatch |
| SPECT perfusion | Complementary perfusion information | Perfusion defects; extent and severity |
| 123I-mIBG SPECT | Add neural information on substrate and triggers | H/M ratio; washout rate; extent of denervation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
