Submitted:
06 February 2026
Posted:
09 February 2026
You are already at the latest version
Abstract
The valorization of citrus peel waste represents a fundamental pillar for developing a circular bioeconomy within the agri-food sector. This study comprehensively evaluated the biorefinery potential of ten citrus varieties, encompassing mandarin (Citrus reticulata criolla, Citrus nobilis Loureiro, Citrus tangerina, Citrus unshiu), lemon (Citrus aurantifolia swingle, Citrus limonia, Citrus limonum, Citrus latifolia), and grapefruit (Citrus paradisi, Citrus paradisi Macfad) from the Bolívar province of Ecuador. The residual biomass was characterized through proximate and elemental analyses, revealing significant variability in moisture, ash, and volatile solids content among varieties. Essential oil extraction was optimized using fractional distillation, systematically evaluating the effect of maceration time at two levels. Results demonstrated that Citrus nobilis Loureiro exhibited the highest extraction yield, while grapefruit varieties showed the most pronounced response to extended maceration time. Gas chromatography coupled with mass spectrometry confirmed limonene as the predominant component across all varieties, with grapefruit essential oils achieving exceptional purity exceeding ninety percent. The chemical profiles revealed statistically significant intervarietal differences in monoterpene distribution, establishing distinctive chemotaxonomic patterns. The principal scientific contribution of this work lies in the advanced kinetic modeling approach, wherein seven mathematical models were rigorously evaluated to describe extraction dynamics. The Monod model demonstrated superior predictive capacity with coefficients of determination exceeding 0.99, providing mechanistically meaningful parameters for process optimization and industrial scaling. This integrated analytical framework, combining compositional characterization with predictive kinetic modeling, positions these agro-industrial residues as sustainable sources of high-quality essential oils for food, pharmaceutical, and cosmetic applications under circular economy principles.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Methodology
2.2.1. Sample Preparation
2.2.2. Analysis of Citrus Peel
2.2.3. Extraction of the Essential Oil
3. Results and Discussion
3.1. Chemical Composition of the Peel of the Citrus Fruits Mandarin, Lemon and Grapefruit.
3.1.1. Proximal Analysis
3.1.2. Elementary Analysis
3.2. Extraction of the Essential Oil from the Citrus Fruits Used
3.3. Chemical Analysis of the Essential Oil of the Citrus Fruits Used
3.4. Mathematical Modeling of the Yield and Extraction Rate of Essential Oils
4. Conclusions
References
- Abdullah, Shahba Rafie, Khalil, R., Razaq, A., & Abdullah, Shahba R. (2018). Extracting Carotenoids Pigments from Citrus Peel and Studying Their Functional Properties. In Journal Tikrit Univ. For Agri. Sci (Vol. 18, Number 4).
- Adeniyi, A., Otoikhian, K., O. Ighalo, J., & Mohammed, I. (2019). Pyrolysis of Different Fruit Peel Waste Via a Thermodynamic Model . 2 , 16–24.
- Adeyanju, J., Alabi, O., Abioye, A., & Korede, O. (2022). Production and Quality Assessment of Biscuit from Acha Flour Supplemented with Pigeon Pea. European Journal of Nutrition & Food Safety , 23–29. [CrossRef]
- Agustí, M., Reig, C., Martínez-Fuentes, A., & Mesejo, C. (2025). Advances in Citrus Fruit Set and Development: A Review. Hortícolae 2026, Vol. 12, Page 18 , 12 (1), 18. [CrossRef]
- Ahmad, M., Rehman, S., Tahir, M., Qureshi, T., Nadeem, M., & Asghar, M. (2016). VARIABILITY IN PEEL COMPOSITION AND QUALITY EVALUATION OF PEEL OILS OF CITRUS VARIETIES . [CrossRef]
- Baccati, C., Gibernau, M., Paoli, M., Ollitrault, P., Tomi, F., & Luro, F. (2021). Chemical variability of peel and leaf essential oils in the citrus subgenus Papeda (Swingle) and few relatives. Plants , 10 (6), 1117. [CrossRef]
- Balderacchi, M., Aguilar-Rivera, N., Veracruzana, U., Luigi Liotta, M., & Monday Idamokoro, E. (2022). A comparative analysis of the proximate and mineral composition of whole Citrus limon and Citrus clementina as a prospective alternative feed resource for livestock farming in South Africa.
- Basak, S., & Annapure, US (2022). The potential of subcritical water as a “green” method for the extraction and modification of pectin: A critical review. Food Research International , 161 , 111849. [CrossRef]
- Bednárek, J., Matejová, L., Jankovská, Z., Vaštyl, M., Sokolová, B., Peikertová, P., Šiler, P., Verner, A., Tokarský, J., Koutník, I., Šváb, M., & Vráblová, M. (2022). The influence of structural properties on the adsorption capacities of microwave-assisted biochars for metazachlor removal from aqueous solutions. Journal of Environmental Chemical Engineering , 10 (3), 108003. [CrossRef]
- Benedetto, N., Carlucci, V., Faraone, I., Lela, L., Ponticelli, M., Russo, D., Mangieri, C., Tzvetkov, N.T., & Milella, L. (2023). An Insight into Citrus medica Linn.: A Systematic Review on Phytochemical Profile and Biological Activities. Plants , 12 (12), 2267. [CrossRef]
- Bharathiraja, S., Suriya, J., Krishnan, M., Manivasagan, P., & Kim, SK (2025). Valorization of citrus processing waste into high-performance bionanomaterials: green synthesis, biomedicine, and environmental remediation. RSC Advances , 15 (43), 36534–36595. [CrossRef]
- Cao, W., Yan, G., Hofmann, H., & Scheuermann, A. (2025). A Novel Permeability–Tortuosity–Porosity Model for Evolving Pore Space and Mineral-Induced Clogging in Porous Medium. Geotechnics 2025, Vol. 5, Page 2 , 5 (1), 2. [CrossRef]
- Chen, C., Sun, N., Li, D., Long, S., Tang, X., Xiao, G., & Wang, L. (2018). Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa. Environmental Science and Pollution Research , 25 (15), 14934–14943. [CrossRef]
- Cheong, M.W., Loke, X.-Q., Liu, S.-Q., Pramudya, K., Curran, P., & Yu, B. (2011). Characterization of Volatile Compounds and Aroma Profiles of Malaysian Grapefruit (Citrus grandis (L.) Osbeck) Blossom and Peel. The Journal of Essential Oil Research , 23 , 34–44. [CrossRef]
- Chiodo, V., Urbani, F., Zafarana, G., Prestipino, M., Galvagno, A., & Maisano, S. (2017). Syngas production by catalytic steam gasification of citrus residues. International Journal of Hydrogen Energy , 42 , 28048–28055. [CrossRef]
- Chiou, T.-Y., Konishi, M., Nomura, S., Shimotori, Y., Murata, M., Ohtsu, N., Kohari, Y., Nagata, Y., & Saitoh, T. (2019). Recovery of Mint Essential Oil through Pressure-releasing Distillation during Subcritical Water Treatment. Food Science and Technology Research , 25 (6), 793–799. [CrossRef]
- da Silva, JCG, Andersen, SLF, Costa, RL, Moreira, R. de FPM, & José, HJ (2019). Bioenergetic potential of Ponkan peel waste (Citrus reticulata) pyrolysis by kinetic modeling and product characterization. Biomass and Bioenergy , 131 , 105401. [CrossRef]
- Dai, L., Zhang, J., & Cheng, F. (2019). Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. International Journal of Biological Macromolecules , 132 , 897–905. [CrossRef]
- Dao, P.T., Nguyen, M. Van, Tran, Q.N., Truong Le, D., Nhi Tran Thi Yen, & Lam, T. Van. (2022). Experimental and Kinetic Modeling Studies on Extraction of Essential Oil from Vietnamese Calamondin (Citrus microcarpa ) by Hydro-Distillation Process. Iranian Journal of Chemistry and Chemical Engineering , 41 (11), 3824–3834. [CrossRef]
- Dao, TP, Tran, NQ, Tran, TT, & Lam, VT (2022). Assessing the kinetic model on extraction of essential oil and chemical composition from lemon peels (Citrus aurantifolia) by hydro-distillation process. Materials Today: Proceedings , 51 , 172–177. [CrossRef]
- Dash, K.K., Ali, N.A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules , 139 , 449–458. [CrossRef]
- de Oliveira, MS, & Nollet, LML (2025). Bioactive compounds: Identification and characterization of their food and pharmacological potential. Bioactive Compounds: Identification and Characterization of Their Food and Pharmacological Potential , 1–436. [CrossRef]
- de Souza-Pinto, F., de Brito-Machado, D., Ramos, YJ, de Queiroz, GA, & de Lima Moreira, D. (2025). Variation in sabinene content in the essential oil of Piper tuberculatum ( Piperaceae ) under the influence of abiotic factors. Rodriguesia , 76 , e00452025. [CrossRef]
- Diaz De Tuesta, JL, Roman, FF, Marques, VC, Silva, AS, Silva, APF, Bosco, TC, Shinibekova, AA, Aknur, S., Kalmakhanova, MS, Massalimova, BK, Arrobas, M., Silva, AMT, & Gomes, HT (2022). Performance and modeling of Ni( II) adsorption from low concentrated wastewater on carbon microspheres prepared from tangerine peels by FeCl3-assisted hydrothermal carbonization. Journal of Environmental Chemical Engineering , 10 (5), 108143. [CrossRef]
- Díaz-Reinoso, B., Rivas, S., Rivas, J., & Domínguez, H. (2023). Subcritical water extraction of essential oils and plant oils. Sustainable Chemistry and Pharmacy , 36 , 101332. [CrossRef]
- Donald, PM, Salamida, DN, Panga, PA, & Mayengo, MM (2026). Thermodynamic behavior of CO2–organic mixtures: Density prediction using explainable machine learning algorithms. Results in Engineering , 29 , 108687. [CrossRef]
- Dornic, N., Ficheux, A.S., & Roudot, A.C. (2016). Qualitative and quantitative composition of essential oils: A literature-based database on contact allergens used for safety assessment. Regulatory Toxicology and Pharmacology , 80 , 226–232. [CrossRef]
- Dulo, B., De Somer, T., Moyo, M., Nakyese, E., Githaiga, J., Raes, K., & De Meester, S. (2023). Kinetic modeling of phenolic compounds extraction from nutshells: influence of particle size, temperature and solvent ratio. Biomass Conversion and Biorefinery 2023 14:19 , 14 (19), 23565–23579. [CrossRef]
- Edet, U., Ebana, R., Ekanemesang, U., Ikon, G., Edem, E., & Elizabeth, M. (2016). Phytochemical Screening, Nutrient Analysis, Anti-termite and Antimicrobial Activity of Citrus paradis Peel Powder. Journal of Applied Life Sciences International , 9 , 1–9. [CrossRef]
- El Barnossi, A., Moussaid, F., & Iraqi Housseini, A. (2021). Tangerine, banana and pomegranate peels valorization for sustainable environment: A review. In Biotechnology Reports (Vol. 29). Elsevier BV . [CrossRef]
- El- ghfar, MHAA, Ibrahim, HM, Hassan, IM, Abdel Fattah, AA, & Mahmoud, MH (2016). Peels of Lemon and Orange as Value-Added Ingredients: Chemical and Antioxidant Properties. International Journal of Current Microbiology and Applied Sciences , 5 (12), 777–794. [CrossRef]
- Esmaeili, A., Abednazari, S., Abdollahzade, Y., Abdollahzadeh, N., Mahjoubian, R., & Tabatabaei Anaraki, M. (2013). Peel Volatile Compounds of Apple (Malus domestica) and Grapefruit (Citrus Paradisi). Journal of Essential Oil Bearing Plants , 15 , 794–799. [CrossRef]
- Gaur, V.K., Gupta, P., Tripathi, V., Thakur, R.S., Regar, R.K., Patel, D.K., & Manickam, N. (2022). Valorization of agro-industrial waste for rhamnolipid production, its role in crude oil solubilization and resensitizing bacterial pathogens. Environmental Technology & Innovation , 25 , 102108. [CrossRef]
- Ghanem, N., Mihoubi, D., Kechaou, N., & Mihoubi, N.B. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage and total phenols content. Industrial Crops and Products , 40 , 167–177. [CrossRef]
- Goh, RMV, Pua, A., Luro, F., Ee, KH, Huang, Y., Marchi, E., Liu, SQ, Lassabliere, B., & Yu, B. (2022). Distinguishing citrus varieties based on genetic and compositional analyses. PLOS ONE , 17 (4), e0267007. [CrossRef]
- Gori, A., Boucherle, B., Rey, A., Rome, M., Fuzzati, N., & Peuchmaur, M. (2021). Development of an innovative maceration technique to optimize extraction and phase partition of natural products. Phytotherapy , 148 , 104798. [CrossRef]
- Green, C., Wheatley, A.O., Bailey, D., Sotelo, A., & Asemota, H. (2014). Nutritional composition of Jamaican citrus agro by-product with potential for nutraceutical product development. Research , 1 . [CrossRef]
- Huang, R., Zhang, Y., Shen, S., Zhi, Z., Cheng, H., Chen, S., & Ye, X. (2020). Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chemistry , 326 , 126785. [CrossRef]
- Hundie, K., & Abdissa, D. (2021). Extraction and Characterization of Pectin from Lemon Waste for Commercial Applications. Journal of the Turkish Chemical Society Section A: Chemistry , 8 , 1111–1120. [CrossRef]
- Indrastuti, N.A., Aminah, S., Handayani, D., & Fauziah, S. (2020). ANTIOXIDANT ACTIVITY OF DIFFERENT DRIED INDONESIAN CITRUS PEEL VARIETIES. In Indonesian Journal of Applied Research (Vol. 1).
- Jiménez Nempeque, LV, Gómez Cabrera, Á. P., & Colina Moncayo, JY (2021). Evaluation of Tahiti lemon shell flour (Citrus latifolia Tanaka) as a fat mimetic. Journal of Food Science and Technology , 58 (2), 720–730. [CrossRef]
- Kim, Y.-J., Choi, H.-J., Chung, M.-S., & Ko, M.-J. (2022). Selective extraction of oxygenated terpene in caraway (Carum carvi L.) using subcritical water extraction (SWE) technique. Food Chemistry , 381 , 132192. [CrossRef]
- Kohajdová, Z., Karovičová, J., & Lauková, M. (2013). Influence of grapefruit dietary fiber rich powder on the rheological characteristics of wheat flour dough and on biscuit quality. Acta Alimentaria , 42 , 91–101. [CrossRef]
- Lainez -Cerón, E., Ramírez-Corona, N., López-Malo, A., & Franco-Vega, A. (2022). An overview of mathematical modeling for conventional and intensified processes for extracting essential oils. Chemical Engineering and Processing - Process Intensification , 178 , 109032. [CrossRef]
- Li, J., Xu, X., Zhou, X., Li, X., Guo, W., Lin, Z., Lin, H., & Piao, Y. (2025). Comprehensive analysis of the flavor volatiles and quality characteristics of ginseng products via GC × GC-TOF-MS, aroma profiles and multivariate statistics. Frontiers in Nutrition , 12 , 1719311. [CrossRef]
- Li, X., Chen, O., Wang, W., Deng, L., Yao, S., Ming, J., Zhang, H., & Zeng, K. (2025). Advances and perspectives in biological control of postharvest fungal decay in citrus fruits utilizing yeast antagonists. International Journal of Food Microbiology , 432 , 111093. [CrossRef]
- Liu, N., Li, X., Zhao, P., Zhang, X., Qiao, O., Huang, L., Guo, L., & Gao, W. (2021). A review of chemical constituents and health-promoting effects of citrus peels. Food Chemistry , 365 , 130585. [CrossRef]
- Lota, M.L., De Rocca Serra, D., Tomi, F., Jacquemond, C., & Casanova, J. (2002). Volatile components of peel and leaf oils of lemon and lime species. Journal of Agricultural and Food Chemistry , 50 (4), 796–805. [CrossRef]
- Mączka, W., Duda-Madej, A., Grabarczyk, M., & Wińska, K. (2022). Natural Compounds in the Battle against Microorganisms—Linalool. Molecules , 27 (20), 6928. [CrossRef]
- Mahato, N., Sharma, K., Sinha, M., Dhyani, A., Pathak, B., Jang, H., Park, S., Pashikanti, S., & Cho, S. (2021). Biotransformation of citrus waste- i : Production of biofuel and valuable compounds by fermentation. In Processes (Vol. 9, Number 2, pp. 1–49). MDPI AG. [CrossRef]
- Mahato, N., Sinha, M., Sharma, K., Koteswararao, R., & Cho, M.H. (2019). Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. In Foods (Vol. 8, Number 11). MDPI Multidisciplinary Digital Publishing Institute. [CrossRef]
- Marey, S., & Shoughy, M. (2016). Effect of Temperature on the Drying Behavior and Quality of Citrus Peels. International Journal of Food Engineering, 12 (7), 661–671. [CrossRef]
- Meegoda, J.N., Chande, C., & Bakshi, I. (2025). Biodigesters for Sustainable Food Waste Management. International Journal of Environmental Research and Public Health 2025, Vol. 22, Page 382 , 22 (3), 382. [CrossRef]
- Meseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A., & Vukelic, N. (2019). Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater. Journal of Industrial and Engineering Chemistry , 75 , 246–252. [CrossRef]
- Mohamed, H.A., & Wassila, B. El. (2015). Fractionation and Physicochemical Properties of Pectic Substances Extracted from Grapefruit Peels. Journal of Food Processing & Technology , 06 (08). [CrossRef]
- Montero-Fernández, I., Lobón, NC, Gómez, LN, Blanco-Salas, J., & Gallego, JCA (2025). Bioactive Potential of Terpenes from Mediterranean Scrub Plants: A Review. Molecules , 30 (21), 4268. [CrossRef]
- Morehouse, BR, Kumar, R.P., Matos, JO, Olsen, S.N., Entova, S., & Oprian, D.D. (2017). Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis. Biochemistry , 56 (12), 1706. [CrossRef]
- Mori-Mestanza, D., Valqui -Rojas, I., Caetano, AC, Culqui-Arce, C., Cruz-Lacerna, R., Cayo-Colca, IS, Castro-Alayo, EM, & Balcázar -Zumaeta, CR (2025). Physicochemical Properties of Nanoencapsulated Essential Oils: Optimizing D-Limonene Preservation. Polymers , 17 (3), 348. [CrossRef]
- Nirmal, NP, Khanashyam, AC, Mundanat, AS, Shah, K., Babu, KS, Thorakkattu, P., Al- Asmari, F., & Pandiselvam, R. (2023). Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. In Foods (Vol. 12, Number 3). MDPI. [CrossRef]
- Ortiz-Sanchez, M., Cardona Alzate, CA, & Solarte-Toro, JC (2024). Orange Peel Waste as a Source of Bioactive Compounds and Valuable Products: Insights Based on Chemical Composition and Biorefining. Biomass , 4 (1), 107–131. [CrossRef]
- Ortiz-Sanchez, M., Omarini, AB, González-Aguirre, J.-A., Baglioni, M., Zygadlo, JA, Breccia, J., D’Souza, R., Lemesoff, L., Bodeain, M., Cardona-Alzate, CA, Pejchinovski, I., & Fernandez-Lahore, MH (2023). Valorization routes of citrus waste in the orange value chain through the biorefinery concept: The Argentina case study. Chemical Engineering and Processing - Process Intensification , 189 , 109407. [CrossRef]
- Panwar, D., Saini, A., Panesar, P.S., & Chopra, H.K. (2021). Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy. Trends in Food Science & Technology , 111 , 549–562. [CrossRef]
- Park, MK, Cha, JY, Kang, MC, Jang, HW, & Choi, YS (2024). The effects of different extraction methods on essential oils from orange and tangor: From the peel to the essential oil. food Science and Nutrition , 12 (2), 804–814. [CrossRef]
- Pérez, M., López- Yerena, A., Lozano- Castellón, J., Olmo- Cunillera, A., Lamuela-Raventós, R.M., Martin- Belloso, O., & Vallverdú -Queralt, A. (2021). Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants 2021, Vol. 10, Page 417 , 10 (3), 417. [CrossRef]
- Perini, JF, Silvestre, W.P., Agostini, F., Toss, D., & Pauletti, G.F. (2017). Fractionation of orange (Citrus sinensis L.) essential oil using vacuum fractional distillation. Separation Science and Technology , 52 (8), 1397–1403. [CrossRef]
- Pham, T., Nguyen, NTP, Dinh, DV, Kieu, NT, Bach, LG, Phong, HX, Muoi, NV, & Truc, TT (2020). Evaluate the Chemical Composition of Peels and Juice of Seedless Lemon (Citrus latifolia) Grown in Hau Giang Province, Vietnam. IOP Conference Series: Materials Science and Engineering , 991 (1). [CrossRef]
- Pomoni, DI, Koukou, MK, Vrachopoulos, M. Gr., & Vasiliadis, L. (2024). Circular economy: A multilevel approach for natural resources and wastes under an agri-food perspective. Water-Energy Nexus , 7 , 103–123. [CrossRef]
- Rafiq, S., Singh, B., & Gat, Y. (2019). Effect of different drying techniques on chemical composition, color and antioxidant properties of kinnow (Citrus reticulata) peel. Journal of Food Science and Technology . [CrossRef]
- Rahman, N.F.A., Shamsudin, R., Ismail, A., Shah, N.N.A.K., & Varith, J. (2018). Effects of drying methods on total phenolic contents and antioxidant capacity of the grapefruit (Citrus grandis (L.) Osbeck) peels. Innovative Food Science & Emerging Technologies , 50 , 217–225. [CrossRef]
- Rojas Gonzalez, AF, & Flórez Montes, C. (2019). Valorization of fruit waste for combustion and pyrolysis. Revista Politécnica , 15 (28), 42–53. [CrossRef]
- Sadat, S., Janati, F., Beheshti, R., Feizy, J., & Fahim, N. (2012). CHEMICAL COMPOSITION OF LEMON (CITRUS LIMON) AND PEELS ITS CONSIDERATIONS AS ANIMAL FOOD. GIDA , 37 , 267.
- Šafranko, S., Šubarić, D., Jerković, I., & Jokić, S. (2023). Citrus By-Products as a Valuable Source of Biologically Active Compounds with Promising Pharmaceutical, Biological and Biomedical Potential. Pharmaceuticals 2023, Vol. 16, Page 1081 , 16 (8), 1081. [CrossRef]
- Saini, R.K., Ranjit, A., Sharma, K., Prasad, P., Shang, X., Gowda, K.G.M., & Keum, Y.S. (2022). Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants , 11 (2), 239. [CrossRef]
- Sharifi-Rad, J., Sureda, A., Tenore, G.C., Daglia, M., Sharifi-Rad, Mehdi, Valussi, M., Tundis, R., Sharifi-Rad, Marzieh, Loizzo, MR, Oluwaseun Ademiluyi, A., Sharifi-Rad, R., Ayatollahi, S.A., & Iriti, M. (2017). Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules: A Journal of Synthetic Chemistry and Natural Product Chemistry , 22 (1), 70. [CrossRef]
- Sharma, P., Vishvakarma, R., Gautam, K., Vimal, A., Kumar Gaur, V., Farooqui, A., Varjani, S., & Younis, K. (2022). Valorization of citrus peel waste for the sustainable production of value-added products. Bioresource Technology , 351 , 127064. [CrossRef]
- SHIN, S.-D., KIM, C.-S., & LEE, J.-H. (2021). Compositional characteristics and antibacterial activity of essential oils in citrus hybrid peels. Food Science and Technology , 42 . [CrossRef]
- Sun, D., Shao, S., Zhang, Y., Yang, Q., Hou, H., & Quan, X. (2020). Integrated Analysis of the Water–Energy–Environmental Pollutant Nexus in the Petrochemical Industry. Environmental Science & Technology , 54 (23), 14830–14842. [CrossRef]
- Tamelová, B., Malaťák, J., & Velebil, J. (2018). Energy valorization of citrus peel waste by torrefaction treatment. Agronomy Research , 16 , 276–285. [CrossRef]
- Tedeschi, L.O. (2023). Review: The prevailing mathematical modeling classifications and paradigms to support the advancement of sustainable animal production. Animal , 17 . [CrossRef]
- Teleken, JT, Galvão, AC, & Robazza, W. da S. (2017). Comparative evaluation of non-linear mathematical models for animal growth and decrement. Acta Scientiarum - Animal Sciences , 39 (1), 73–81. [CrossRef]
- Wahab, A., Abou Elyazeed, A.M., & Abdalla, A.E. (2018). Bioactive Compounds in Some Citrus Peels as Affected by Drying Processes and Quality Evaluation of Cakes Supplemented with Citrus Peels Powder. In J. Adv. Agric. Res. (Fac. Agric. Saba Basha) (Vol. 44, Number 1).
- Wedamulla, NE, Fan, M., Choi, Y.-J., & Kim, E.-K. (2022). Citrus peel as a renewable bioresource: Transforming waste to food additives. Journal of Functional Foods , 95 , 105163. [CrossRef]
- Wu, Q., Zhu, X., Gao, H., Zhang, Z., Zhu, H., Duan, X., Qu, H., Yun, Z., & Jiang, Y. (2019). Comparative profiling of primary metabolites and volatile compounds in Satsuma mandarin peel after ozone treatment. Postharvest Biology and Technology , 153 , 1–12. [CrossRef]
- Xu, M., Tian, G., Zhao, C., Ahmad, A., Zhang, H., Bi, J., Xiao, H., & Zheng, J. (2017). Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel. International Journal of Analytical Chemistry , 2017 . [CrossRef]
- Yan, S., Bhawal, R., Yin, Z., Thannhauser, T.W., & Zhang, S. (2022). Recent advances in proteomics and metabolomics in plants. Molecular Horticulture , 2 (1), 17. [CrossRef]
- Yankovsky, S., Tolokolnikov, A., Cherednik, I., & Kuznetsov, G. (2019). Reasons for tangerine peel utilization in the composition of mixed fuels based on bituminous coal. Journal of Physics: Conference Series , 1359 , 012136. [CrossRef]
- Yin, J., Hu, X., Hou, Y., Liu, S., Jia, S., Gan, C., Ou, Y., & Zhang, X. (2023). Comparative analysis of chemical compositions and antioxidant activities of different grapefruit varieties from China. Food Chemistry Advances , 2 . [CrossRef]
- Yuan, Y., Huang, Z., Wang, Y., Deng, L., Wang, T., Cao, D., Liao, L., Xiong, B., Tu, M., Wang, Z., & Wang, J. (2025). Variety Effect on Peelability and Mechanisms of Action of Late-Ripening Citrus Fruits. Plants 2025, Vol. 14, Page 1349 , 14 (9), 1349. [CrossRef]
- Zarate Vilet, N., Gué, E., Servent, A., Delalonde, M., & Wisniewski, C. (2020). Filtration-compression step as downstream process for flavonoids extraction from citrus peels: Performances and flavonoids dispersion state in the filtrate. Food and Bioproducts Processing , 120 , 104–113. [CrossRef]
| Material vegetable |
Proximal | Elementary | ||||||
|---|---|---|---|---|---|---|---|---|
| ω (%) |
Ace (%) |
VS (%) |
C (%) |
H (%) |
N (%) |
S (%) |
||
| CRC | 77.92 | 4.40 | 82.33 | 39.41 | 6.50 | 0.71 | 0 | |
| CNL | 79.48 | 5.37 | 88.04 | 39.32 | 6.52 | 0.73 | 0 | |
| CT | 74.90 | 5.06 | 90.25 | 39.03 | 6.09 | 0.75 | 0 | |
| CU | 78.27 | 5.17 | 88.22 | 39.36 | 6.45 | 0.72 | 0 | |
| CAS | 83.30 | 4.55 | 84.45 | 42.00 | 6.30 | 0.90 | 0 | |
| CL1 | 79.94 | 5.48 | 80.07 | 42.07 | 6.31 | 0.94 | 0 | |
| CL2 | 86.21 | 4.44 | 82.76 | 42.06 | 6.37 | 0.95 | 0 | |
| CL3 | 82.76 | 4.99 | 87.93 | 42.03 | 6.35 | 0.91 | 0 | |
| CP | 69.79 | 4.44 | 91.86 | 41.38 | 6.36 | 0.71 | 0 | |
| CPM | 66.05 | 4.27 | 92.89 | 41,43 | 6.38 | 0.71 | 0 | |
| Variety | And (8h) % |
And (12h) % | ΔY (%) |
Efficiency |
ρ (8h) g/ mL |
ρ (12h) g/ mL |
Δ ρ | pH (8h) | pH (12h) | ΔpH |
|---|---|---|---|---|---|---|---|---|---|---|
| CRC | 1.5 | 1.79 | 19:30 | Moderate | 0.84 | 0.84 | 0.00 | 5.12 | 4.87 | -0.25 |
| CNL | 2.43 | 2.91 | 19.80 | Moderate | 0.83 | 0.84 | 0.01 | 4.63 | 5.48 | 0.85 |
| CT | 1.81 | 1.71 | -5.50 | Stable | 0.84 | 0.83 | -0.01 | 4.16 | 5.26 | 1.10 |
| CU | 2.53 | 2.61 | 3.20 | Stable | 0.83 | 0.83 | 0.00 | 4.98 | 4.94 | -0.04 |
| CAS | 0.83 | 0.97 | 16.90 | Moderate | 0.85 | 0.85 | 0.00 | 4.42 | 4.43 | 0.01 |
| CL1 | 0.67 | 0.56 | -16.40 | Low | 0.85 | 0.85 | 0.00 | 4.43 | 4.43 | 0.00 |
| CL2 | 0.69 | 0.81 | 17.40 | Moderate | 0.85 | 0.85 | 0.00 | 4.43 | 4.42 | -0.01 |
| CL3 | 0.72 | 0.84 | 16.70 | Moderate | 0.86 | 0.86 | 0.00 | 4.42 | 4.43 | 0.01 |
| CP | 1.15 | 1.67 | 45.20 | High | 0.85 | 0.84 | -0.01 | 4.45 | 4.45 | 0.00 |
| CPM | 0.84 | 1.18 | 40.30 | High | 0.85 | 0.85 | 0.00 | 4.33 | 4.33 | 0.00 |
| Variety | Limonene (%) | α-Pinene (%) | γ- Terpinene (%) | Linalool (%) | Shannon Index* | Dominant profile |
|---|---|---|---|---|---|---|
| CRC | 74.56 ± 0.01 | 3.20 ± 0.03 | 20.21 ± 0.12 | 0.00 | 1.12 | Limonene/γ -terpinene |
| CNL | 92.98 ± 0.99 | 0.00 | 2.47 ± 0.06 | 0.00 | 0.25 | dominant limonene |
| CT | 86.48 ± 0.90 | 2.42 ± 0.05 | 5.82 ± 0.13 | 2.36 ± 0.06 | 0.51 | Limonene with oxygenates |
| CU | 85.94 ± 0.31 | 2.47 ± 0.00 | 5.08 ± 0.02 | 3.58 ± 0.01 | 0.58 | Limonene -linalool |
| Variety | Limonene (%) | β-Pinene (%) | α-Pinene (%) | γ- Terpinene (%) | β/α-pinene ratio | Chemotaxonomic classification |
|---|---|---|---|---|---|---|
| CAS | 60.35 ± 0.33 | 22.71 ± 0.28 | 4.38 ± 0.06 | 9.14 ± 0.13 | 5.18 | High in β-pinene |
| CL1 | 72.84 ± 0.13 | 10.01 ± 0.01 | 3.34 ± 0.00 | 10.76 ± 0.04 | 3.00 | Pineal balance |
| CL2 | 82.50 ± 0.70 | 2.42 ± 0.03 | 2.57 ± 0.01 | 0.00 | 0.94 | dominant limonene |
| CL3 | 81.75 ± 0.50 | 0.00 | 3.13 ± 0.02 | 7.58 ± 0.05 | 0.00 | Limonene-γ -terpinene |
| Variety | Limonene (%) | α-Pinene (%) | Sabinene (%) | Myrcene (%) | Relative purity* (%) | Characteristic aromatic notes |
|---|---|---|---|---|---|---|
| CP | 92.10 ± 0.57 | 2.20 ± 0.00 | 2.70 ± 0.01 | 3.04 ± 0.00 | 96.8 | Intense citrus, sweet |
| CPM | 90.77 ± 0.09 | 2.32 ± 0.05 | 3.81 ± 0.07 | 3.10 ± 0.01 | 95.2 | Fresh citrus, slightly bitter |
| Time (min) |
CNL | CAS | CP | |||||
|---|---|---|---|---|---|---|---|---|
| EO (g) |
AND (%) |
EO (g) |
AND (%) |
EO (g) |
AND (%) |
|||
| 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 10 | 3,826 | 1,275 | 0.551 | 0.276 | 1,068 | 0.534 | ||
| 20 | 1,422 | 1,749 | 0.286 | 0.419 | 0.694 | 0.881 | ||
| 30 | 0.827 | 2,025 | 0.179 | 0.508 | 0.468 | 1,115 | ||
| 40 | 0.643 | 2,239 | 0.128 | 0.572 | 0.273 | 1,252 | ||
| 50 | 0.548 | 2,422 | 0.108 | 0.626 | 0.189 | 1,346 | ||
| 60 | 0.416 | 2,560 | 0.093 | 0.673 | 0.125 | 1,409 | ||
| 70 | 0.229 | 2,637 | 0.083 | 0.714 | 0.099 | 1,458 | ||
| 80 | 0.215 | 2,708 | 0.071 | 0.750 | 0.098 | 1,507 | ||
| 90 | 0.175 | 2,767 | 0.062 | 0.781 | 0.096 | 1,555 | ||
| 100 | 0.159 | 2,820 | 0.057 | 0.809 | 0.087 | 1,599 | ||
| 110 | 0.145 | 2,868 | 0.052 | 0.835 | 0.077 | 1,637 | ||
| 120 | 0.122 | 2,909 | 0.061 | 1,668 | ||||
| Model name | CNL | CAS | CP | |||
|---|---|---|---|---|---|---|
| Parameter | Statistics | Parameter | Statistics | Parameter | Statistics | |
| Monod |
k = 17.8330 = 3.3116 |
= 0.9950 RMSE = 0.0376 |
k = 32.0015 = 1.0536 |
= 0.9934 RMSE = 0.0150 |
k = 25.3544 = 2.0078 |
= 0.9973 RMSE = 0.0185 |
| Teissier |
k = 37.0709 = 1.6308 |
= 0.9256 RMSE = 0.1448 |
k = 41.4528 = 0.4476 |
= 0.8103 RMSE = 0.0806 |
k = 37.2635 = 0.9045 |
= 0.8341 RMSE = 0.1453 |
| Haldane |
k = 14.7416 = 0.0007 = 3.0425 |
= 0.9975 RMSE = 0.0263 |
k = 20.6145 = 0.0018 = 0.8322 |
= 0.9998 RMSE = 0.0029 |
k = 26.5949 = 0.0002 = 2.0604 |
= 0.9832 RMSE = 0.0462 |
| Gompertz |
k = 0.0370 = 0.1243 = 2.9034 |
= 0.9959 RMSE = 0.0339 |
k = 0.0304 = 0.3459 = 0.8599 |
= 0.9922 RMSE = 0.0163 |
k = 0.0434 = 0.4450 = 1.6238 |
= 0.9857 RMSE = 0.0427 |
| Moser |
k = 12.1030 = 0.7997 = 3.6862 |
= 0.9990 RMSE = 0.0164 |
k = 21.6443 = 0.7223 = 1.4360 |
= 0.9995 RMSE = 0.0040 |
k = 0.9566 = 0.0064 = 0.0239 |
= 0.9002 RMSE = 0.1127 |
| Powell |
k = 8.9165 = 8.9165 = 3.3116 |
= 0.9950 RMSE = 0.0376 |
k = 16,0008 = 16,0008 = 1.0536 |
= 0.9934 RMSE = 0.0150 |
k = 12.6772 = 12.6772 = 2.0078 |
= 0.9973 RMSE = 0.0185 |
| Logistic law |
k = 6.3192 = 2.8866 |
= 0.8998 RMSE = 0.1681 |
k = 7.5226 = 0.7975 |
= 0.8505 RMSE = 0.0716 |
k = 7.5219 = 1.6511 |
= 0.9241 RMSE = 0.0983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).