Submitted:
06 February 2026
Posted:
06 February 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
| S.No. | Material | Source |
|---|---|---|
| 1. | Cetrizine Dihydrochloride | Raj Pioneer Laboratories Pvt, Ltd. (Rajeev Nagar, Madhya Pradesh, India) |
| 2. | Mannitol | Haihang Industry Co. Ltd. (South Gongye Road, Jinan City, Shandong Province, China) |
| 3. | MCCP 101 | NB Enerprenuers (Kamptee Road, Nagpur, Maharashtra , India) |
| 4. | Croscarmellose sodium | Sudarshan Trading (Royapettah, Chennai, Tamil Nadu, India) |
| 5. | Crospovidone | Sun Pharmaceutical Industries Ltd. (Jebel Ali Free Zone, Dubai, UAE) |
| 6. | Aspartame | Stevia world aggrotech (India) |
| 7. | Orange Flavour | VedaOils (Shivalik Nagar, Kanpur, Uttar Pradesh, India) |
| 8. | Aerosil-200 | Cbot sammar Ltd. |
| 9. | Talcum | Orchid lifesciences (Akodi Village, Daman U.T. 396210, India) |
| 10. | Magnesium stearate | MLA group of industries (Brahm Nagar, Kanpur, Uttar Pradesh, India) |
| 11. | Stearic acid | Innova corporate (West Shalimar Bagh, New Delhi, Delhi 110088, India) |
| 12. | Compritol 888 ATO | Gattefosse (Vikhroli (East), Mumbai, India) |
| 13. | Ethyl cellulose | Vizag chemicals (Visakhapatnam area, India) |
2.2. Development of Standard Calibration Curve
2.3. Compatibility Study
2.4. Preparation of Complex
| Variable | units | Type | Coaded(actual) | |
|---|---|---|---|---|
| Low | High | |||
| Factors | ||||
| Stearic acid | mg | Numeric | -1 (0) | +1 (30) |
| Compirtol 888 ATO | mg | Numeric | -1 (0) | +1 (30) |
| Responses | Goal | |||
| Drug content | % | 100 | ||
| Drug release | % | 100 | ||
| In-vitro taste masking efficiency | % | maximum | ||
2.5. Characterization Study
Complex Formation
Drug Content in DCC
In-Vitro Taste Masking Assessment
2.6. Preparation of Orodispersible Tablets (ODT) by Direct Compression
| S.No. | Ingredients | Quantity/batch (%) |
| 1. | Cetirizine dihydrochloride/coating complex | Equivalent to 10 mg |
| 2. | Microcrystalline cellulose 101 | 20.0 |
| 3. | Mannitol | 24.0 |
| 4. | Croscarmellose sodium | 3.0 |
| 5. | Crospovidone CL | 6.0 |
| 6. | Sodium lauryl sulphate | 2.0 |
| 7. | Aspartame | 3.0 |
| 8. | Orange flavor | 2.0 |
| 9. | Magnesium stearate | 1.0 |
| 10. | Talcum | 1.0 |
| 11. | Aerosol-200 | 1.0 |
2.7. Precompression Evaluation of Tablets
2.8. Post-Compression Evaluation of Tablets
| Medium: | 0.1 N HCl |
| Volume: | 900 ml |
| Apparatus: | Type 2 |
| Rpm: | 100 |
| Time: | 45 minutes |
3. Results and Discussion

3.1. Accuracy and Precision
3.2. Compatibility Study

3.3. Characterization of Complex Formation

3.4. Study on the Influence of Stearic Acid and Compritol 888 ATO on Drug Release, In-Vitro Taste-Masking Efficiency, and Drug Content
3.5. In-Vitro Dissolution Study
3.6. Optimization of Formulation
| Batch no. | stearic acid (mg) | compritol 888 ATO (mg) | Drug content (%) |
Drug release (%) |
In-vitro taste masking efficiency (%) |
|---|---|---|---|---|---|
| F1 | 15 | 0 | 98.08 | 98.55 | 19.62 |
| F2 | 30 | 0 | 101.02 | 99.97 | 12.23 |
| F3 | 0 | 15 | 100.47 | 98.25 | 59.62 |
| F4 | 0 | 30 | 101.27 | 98.28 | 46.53 |
| F5 | 15 | 15 | 101.55 | 86.72 | 21.35 |
| F6 | 15 | 30 | 100.99 | 86.99 | 23.76 |
| F7 | 30 | 15 | 101.27 | 87.83 | 53.32 |
| F8 | 30 | 30 | 99.005 | 88.71 | 33.21 |
| F9 | 0 | 0 | 100.75 | 104.85 | 5.54 |
| F10 | 15 | 15 | 98.96 | 100.58 | 20.95 |
| F11 | 15 | 15 | 99.16 | 101.42 | 23.12 |
| F12 | 15 | 15 | 99.87 | 101.15 | 19.63 |
| F13 | 15 | 15 | 97.41 | 100.29 | 21.79 |
3.7. Similarity and Dissimilarity Study
3.8. Drug Release Model Study

4. Conclusions
Supplementary Materials
References
- Urbán-Morlán, Z.; Serrano-Mora, L. E.; Martínez-Acevedo, L.; Leyva-Gómez, G.; Mendoza-Muñoz, N.; Quintanar-Guerrero, D. New developments in intrauterine drug delivery systems and devices. In Drug Delivery Devices and Therapeutic Systems; Elsevier, 2021; pp. 601–622. [Google Scholar] [CrossRef]
- Pandita, D.; et al. pH-sensitive polymeric nanocarriers for enhanced intracellular drug delivery. In Smart Polymeric Nano-Constructs in Drug Delivery; Elsevier, 2023; pp. 65–107. [Google Scholar] [CrossRef]
- Dey, P.; Maiti, S. Orodispersible tablets: A new trend in drug delivery. J Nat Sci Biol Med 2010, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Popa, G.; Gafiţanu, E. Oral disintegrating tablets. A new, modern, solid dosage form. Rev Med Chir Soc Med Nat Iasi 2003, 107, 337–42. [Google Scholar] [PubMed]
- Fu, Y.; Yang, S.; Jeong, S. H.; Kimura, S.; Park, K. Orally Fast Disintegrating Tablets: Developments, Technologies, Taste-Masking and Clinical Studies. Crit Rev Ther Drug Carrier Syst 2004, 21(no. 6), 433–476. [Google Scholar] [CrossRef] [PubMed]
- Changoiwala, N.; Gohel, M. C.; Mehta, K.; Modi, S. C.; Parikh, R. K. Formulation development and optimization of orodispersible tablet of cetrizine hydrochloride. 2012. Available online: www.ijprbs.com.
- Gopaiah, Kv.; Professor, A.; Professor, A. Formulation & Evaluation of Loratadine Hydrochloride Oral Disintegrating Tablets by Direct Compression Method by Using super Disintegrates. International Journal of Research and Analytical Reviews 2020, 7(no. 1). Available online: www.ijrar.org.
- Elawni, A. E.; Osman, Z.; Salih, M.; Elballa, W.; Shayoub, M. Implementation and comparison of different taste masking techniques to design and assess dispersible tablet formulations. Journal of Applied Pharmaceutical Research 2022, 10(no. 4), 1–13. [Google Scholar] [CrossRef]
- Nakano, Y.; Miura, M.; Namiki, N.; Uchida, S. Effects of Flavors on Taste Sensation of Pioglitazone Orally Disintegrating Tablets. Chem Pharm Bull (Tokyo) 2024, 72(no. 11), c24–00425. [Google Scholar] [CrossRef] [PubMed]
- Hari, Kurella; Rajeshwori, Saripiri. Preparation and evaluation of drotaverine hydrochloride orally disintegrating tablets using melt granulation. J Appl Pharm Sci 2018, 8(no. 10), 39–46. [Google Scholar] [CrossRef]
- Cherian, S.; Lee, B. S.; Tucker, R. M.; Lee, K.; Smutzer, G. Toward Improving Medication Adherence: The Suppression of Bitter Taste in Edible Taste Films. Adv Pharmacol Sci 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Ogata, T.; Ozeki, T. Preparation of bitter taste-masking granules of lafutidine for orally disintegrating tablets using water-insoluble/soluble polymer combinations. J Drug Deliv Sci Technol 2016, 32, 38–42. [Google Scholar] [CrossRef]
- Guhmann, M.; Preis, M.; Gerber, F.; Pöllinger, N.; Breitkreutz, J.; Weitschies, W. Design, development and in-vitro evaluation of diclofenac taste-masked orodispersible tablet formulations. Drug Dev Ind Pharm 2015, 41(no. 4), 540–551. [Google Scholar] [CrossRef] [PubMed]
- Mahale, S.; Tayde, M.; Ahire, Y. G.; Dhikale, R. S.; Gulecha, V. S. Design and evaluation of cost-effective oro-dispersible tablets of venlafaxine hydrochloride by effervescent method. Journal of Applied Pharmaceutical Research 2024, 12(no. 3), 46–55. [Google Scholar] [CrossRef]
- Drašković, M.; Medarević, D.; Aleksić, I.; Parojčić, J. In vitro and in vivo investigation of taste-masking effectiveness of Eudragit E PO as drug particle coating agent in orally disintegrating tablets. Drug Dev Ind Pharm 2017, 43(no. 5), 723–731. [Google Scholar] [CrossRef] [PubMed]
- Sharma. Development of disintegrating multiple-unit tablets WO. 2009. [Google Scholar]
- A. M. Evans. M. D. H. P. Stefan Lukas, “WO1997039747A1,” 1997 Accessed: Mar. 18, 2025. [Online]. Available online: https://patents.google.com/patent/WO1997039747A1/en.
- Islam, M. S.; Nm, A. A. Formulation Development, Preparation and Evaluation of Taste Masking Orodispersible Tablet of Tiemonium Methylsulfate by using HPMC as Taste Masking Agent. 2019. [Google Scholar]
- The Indian Pharmacopoeia Commission. cetrizine tablet monograph. In Indian pharmacopoeia; 2022; Volume 1, p. 1822. [Google Scholar]
- Khan, M. I.; Murtaza, G.; Awan, S. Development and validation of stability indicating assay method of cetirizine hydrochloride by HPLC. 2018. Available online: www.internationalscholarsjournals.org.
- Pawar, H. A.; Joshi, P. R. Development and Evaluation of Taste Masked Granular Formulation of Satranidazole by Melt Granulation Technique. J Pharm (Cairo) 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Singh, M. Formulation Development and Evaluation of Fast Disintegrating Tablet of Cetirizine Hydrochloride: A Novel Drug Delivery for Pediatrics and Geriatrics. J Pharm (Cairo) 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; et al. Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J Supercrit Fluids 2010, 55(no. 1), 348–357. [Google Scholar] [CrossRef]
- Thakur, D.; Sharma, R. Solid dispersion a novel approach for enhancement of solubility and dissolution rate: a review. Indian Journal of Pharmaceutical and Biological Research 2019, 7(no. 03), 05–11. [Google Scholar] [CrossRef]
- Tzakri, T.; et al. Determination of Gastric Water Emptying in Fasted and Fed State Conditions Using a Compression-Coated Tablet and Salivary Caffeine Kinetics. Pharmaceutics 2023, 15(no. 11), 2584. [Google Scholar] [CrossRef] [PubMed]
- Gaglani, R.; Shah, N.; Sheikh, A.; Jain, H.; Meshram, D. B. All rights reserved. International Journal of Pharma Research and Health Sciences 2017, 5(no. 5), 1868–72. [Google Scholar] [CrossRef]






| Time (minute) | Predicted value (RT) |
Observed value (Tt) | [Rt-Tt] | [Rt-Tt]2 |
|---|---|---|---|---|
| 5 | 69.32 | 73.15 | 3.83 | 14.66 |
| 10 | 80.45 | 80.44 | 0.01 | 0 |
| 15 | 86.62 | 85.03 | 1.59 | 2.52 |
| 20 | 92.40 | 88.45 | 3.95 | 15.60 |
| 30 | 95.64 | 93.50 | 2.13 | 4.53 |
| 45 | 98.25 | 98.84 | 0.59 | 0.34 |
| 60 | 99.43 | 102.82 | 3.38 | 11.42 |
| Sum [Rt-Tt] | 15.48 | |||
| Sum [Rt-Tt]2 | 49.109 | |||
| Sum Rt | 622.12 | |||
| Dissimilarity factor | 2.48 | |||
| Similarity factor | 69.0 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
