Submitted:
05 February 2026
Posted:
09 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. High-Resolution Diffusion and Anatomical MRI Acquisition
2.2.1. MRI Sample Preparation
2.2.2. High-Resolution 3D Isotropic Diffusion MRI Acquisition
2.2.3. High-Resolution 3D Isotropic Anatomical MRI
2.3. Mouse Brain Template
2.4. Atlas-Based segmentation
2.5. Diffusion Tractography
2.6. Adjacency Matrix and Connectogram:
2.7. Network Topography
2.8. Statistical Analysis
3. Results
3.1. Probing Brain Micro-Environment and Connectivity with Diffusion MRI and Diffusion Tractography
3.2. Global High-Definition Fiber Tractography (HDFT):
3.3. Brain Topology with High-Definition Brain Network (HDBN) Analysis:
3.4. Data-Driven Network Topology Characterization of Cdkl5 KO Brains
3.4.1. Network Topology Changes in Cdkl5 at the Whole Brain Level
3.4.2. Regional Network Topology Changes in Cdkl5 Brains










3.5. Hypothesis-Driven Characterization of Brain Circuitry for CDD
3.5.1. Brain Network Characterization in the Fear Conditioning Circuitry
3.5.2. Brain Network Characterization of Circuitry in the Temporal Lobe Epilepsy
4. Conclusions and Discussion
Abbreviation
Supplementary Materials
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olson, HE; Demarest, ST; Pestana-Knight, EM; Swanson, LC; Iqbal, S; Lal, D; Leonard, H; Cross, JH; Devinsky, O; Benke, TA. Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: Clinical Review. Pediatric neurology 2019, 97, 18–25. [Google Scholar] [CrossRef]
- Bahi-Buisson, N; Bienvenu, T. CDKL5-Related Disorders: From Clinical Description to Molecular Genetics. Mol Syndromol. 2012, 2, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Demarest, ST; Olson, HE; Moss, A; Pestana-Knight, E; Zhang, X; Parikh, S; Swanson, LC; Riley, KD; Bazin, GA; Angione, K; et al. CDKL5 deficiency disorder: Relationship between genotype, epilepsy, cortical visual impairment, and development. Epilepsia 2019, 60, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Jakimiec, M; Paprocka, J; Śmigiel, R. CDKL5 Deficiency Disorder-A Complex Epileptic Encephalopathy. Brain Sci. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Montini, E; Andolfi, G; Caruso, A; Buchner, G; Walpole, SM; Mariani, M; Consalez, G; Trump, D; Ballabio, A; Franco, B. Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region. Genomics 1998, 51, 427–433. [Google Scholar] [CrossRef]
- Kalscheuer, VM; Tao, J; Donnelly, A; Hollway, G; Schwinger, E; Kübart, S; Menzel, C; Hoeltzenbein, M; Tommerup, N; Eyre, H; et al. Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am J Hum Genet. 2003, 72, 1401–1411. [Google Scholar] [CrossRef]
- Fichou, Y; Nectoux, J; Bahi-Buisson, N; Chelly, J; Bienvenu, T. An isoform of the severe encephalopathy-related CDKL5 gene, including a novel exon with extremely high sequence conservation, is specifically expressed in brain. J Hum Genet. 2011, 56, 52–57. [Google Scholar] [CrossRef]
- Rademacher, N; Hambrock, M; Fischer, U; Moser, B; Ceulemans, B; Lieb, W; Boor, R; Stefanova, I; Gillessen-Kaesbach, G; Runge, C; et al. Identification of a novel CDKL5 exon and pathogenic mutations in patients with severe mental retardation, early-onset seizures and Rett-like features. Neurogenetics 2011, 12, 165–167. [Google Scholar] [CrossRef]
- Williamson, SL; Giudici, L; Kilstrup-Nielsen, C; Gold, W; Pelka, GJ; Tam, PP; Grimm, A; Prodi, D; Landsberger, N; Christodoulou, J. A novel transcript of cyclin-dependent kinase-like 5 (CDKL5) has an alternative C-terminus and is the predominant transcript in brain. Hum Genet. 2012, 131, 187–200. [Google Scholar] [CrossRef]
- Leonard, H; Downs, J; Benke, TA; Swanson, L; Olson, H; Demarest, S. CDKL5 deficiency disorder: clinical features, diagnosis, and management. The Lancet Neurology 2022, 21, 563–576. [Google Scholar] [CrossRef]
- Bahi-Buisson, N; Nectoux, J; Rosas-Vargas, H; Milh, M; Boddaert, N; Girard, B; Cances, C; Ville, D; Afenjar, A; Rio, M; et al. Key clinical features to identify girls with CDKL5 mutations. Brain 2008, 131, 2647–2661. [Google Scholar] [CrossRef] [PubMed]
- Sampedro-Castañeda, M; Baltussen, LL; Lopes, AT; Qiu, Y; Sirvio, L; Mihaylov, SR; Claxton, S; Richardson, JC; Lignani, G; Ultanir, SK. Epilepsy-linked kinase CDKL5 phosphorylates voltage-gated calcium channel Cav2.3, altering inactivation kinetics and neuronal excitability. Nature Communications 2023, 14, 7830. [Google Scholar] [CrossRef] [PubMed]
- Kadam, SD; Sullivan, BJ; Goyal, A; Blue, ME; Smith-Hicks, C. Rett Syndrome and CDKL5 Deficiency Disorder: From Bench to Clinic. International journal of molecular sciences 2019, 20. [Google Scholar] [CrossRef]
- Laurvick, CL; de Klerk, N; Bower, C; Christodoulou, J; Ravine, D; Ellaway, C; Williamson, S; Leonard, H. Rett syndrome in Australia: a review of the epidemiology. The Journal of pediatrics 2006, 148, 347–352. [Google Scholar] [CrossRef]
- Artuso, R; Mencarelli, MA; Polli, R; Sartori, S; Ariani, F; Pollazzon, M; Marozza, A; Cilio, MR; Specchio, N; Vigevano, F; et al. Early-onset seizure variant of Rett syndrome: definition of the clinical diagnostic criteria. Brain Dev. 2010, 32, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, M; Dempster, K; Mihaylov, SR; Claxton, S; Ultanir, SK. Cell type-specific expression, regulation and compensation of CDKL5 activity in mouse brain. Mol Psychiatry 2024, 29, 1844–1856. [Google Scholar] [CrossRef]
- Vossler, D; Gidal, B; Committee AT. A Summary of Antiseizure Medications Available in the United States: 4th Edition; Accessed; American Epilepsy Society, 2024; (accessed on 1 April 2024). [Google Scholar]
- Olson, HE; Daniels, CI; Haviland, I; Swanson, LC; Greene, CA; Denny, AMM; Demarest, ST; Pestana-Knight, E; Zhang, X; Moosa, AN; et al. Current neurologic treatment and emerging therapies in CDKL5 deficiency disorder. J Neurodev Disord. 2021, 13, 40. [Google Scholar] [CrossRef]
- Dell'Isola, GB; Portwood, KE; Consing, K; Fattorusso, A; Bartocci, A; Ferrara, P; Di Cara, G; Verrotti, A; Lodolo, M. Current Overview of CDKL-5 Deficiency Disorder Treatment. Pediatr Rep. 2024, 16, 21–25. [Google Scholar] [CrossRef]
- FDA UFaDA. FDA approves drug for treatment of seizures associated with rare disease in patients two years of age and older. 2022. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-drug-treatment-seizures-associated-rare-disease-patients-two-years-age-and-older.
- Junaid, M; Wong, K; Korolainen, MA; Amin, S; Downs, J; Leonard, H. Measuring the Burden of Epilepsy Hospitalizations in CDKL5 Deficiency Disorder. Pediatric neurology 2025, 163, 68–75. [Google Scholar] [CrossRef]
- Lavery, D; Cronin, A; Rakibuz-Zaman, M; Crosby, K; Gwadry - Sridhar, F. PCR70 Diagnostic Journey, Seizure Burden, and Quality of Life Among Patients With CDKL5 Deficiency Disorder Using Real-World Data. Value in Health 2024, 27, S308. [Google Scholar] [CrossRef]
- Wong, K; Junaid, M; Alexander, S; Olson, HE; Pestana-Knight, EM; Rajaraman, RR; Downs, J; Leonard, H. Caregiver Perspective of Benefits and Side Effects of Anti-Seizure Medications in CDKL5 Deficiency Disorder from an International Database. CNS drugs 2024, 38, 719–732. [Google Scholar] [CrossRef]
- Velarde-García, JF; Güeita-Rodríguez, J; Jiménez-Antona, C; García-Bravo, C; Aledo-Serrano, Á; Gómez-Sánchez, SM; Palacios-Ceña, D. The impact of developmental and epileptic encephalopathies on families: a qualitative study. Eur J Pediatr. 2024, 183, 4103–4110. [Google Scholar] [CrossRef] [PubMed]
- Amin, S; Møller, RS; Aledo-Serrano, A; Arzimanoglou, A; Bager, P; Jóźwiak, S; Kluger, GJ; López-Cabeza, S; Nabbout, R; Partridge, CA; et al. Providing quality care for people with CDKL5 deficiency disorder: A European expert panel opinion on the patient journey. Epilepsia open. 2024, 9, 832–849. [Google Scholar] [CrossRef]
- Gautam, N. Grant from the California Institute for Regenerative Medicine will fund research into CDKL5. Accessed. UC Davis MIND Insitute, 2022. (accessed on 10 August 2022).
- Jogani, J; Stansfield, N. CDKL5 and Gene Therapy; Accessed; Strategic Alliance Partnership, 2025; (accessed on 24 September 2025). [Google Scholar]
- Medici, G; Tassinari, M; Loi, M; Bove, AM; Casadei Garofani, B; Volpedo, G; Mottolese, N; Matteoli, G; Lo Martire, V; Berteotti, C; et al. Safety and efficacy of Igk-TATk-CDKL5 gene therapy in mosaic CDKL5 deficiency. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 2025, e00727. [Google Scholar] [CrossRef]
- Song, X; Xia, Z; Martinez, D; Xu, B; Spritzer, Z; Zhang, Y; Nugent, E; Ho, Y; Terzic, B; Zhou, Z. Independent genetic strategies define the scope and limits of CDKL5 deficiency disorder reversal. Cell Rep Med. 2025, 6, 101926. [Google Scholar] [CrossRef]
- Ultragenyx. UX055 AAV9 gene therapy for the potential treatment of CDKL5 Deficiency Disorder (CDD). 2025. [Google Scholar]
- Voronin, G; Narasimhan, J; Gittens, J; Sheedy, J; Lipari, P; Peters, M; DeMarco, S; Cao, L; Varganov, Y; Kim, MJ; et al. Preclinical studies of gene replacement therapy for CDKL5 deficiency disorder. Mol Ther. 2024, 32, 3331–3345. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Montante, JJ; Márquez-Rojo, P; Saavedra-Milán, B; Hernández-Medrano, C; Bravo-Oro, A. Clinical and molecular heterogeneity in CDLK5 disorders. Bol Med Hosp Infant Mex. 2023, 80, 47–52. [Google Scholar] [CrossRef]
- Discorders NNOoR. CDKL5 Deficiency Disorder. NORD National Organization of Rare Discorders. Accessed. 2024. (accessed on 4/25/2024).
- Wang, IT; Allen, M; Goffin, D; Zhu, X; Fairless, AH; Brodkin, ES; Siegel, SJ; Marsh, ED; Blendy, JA; Zhou, Z. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proceedings of the National Academy of Sciences of the United States of America 2012, 109, 21516–21521. [Google Scholar] [CrossRef] [PubMed]
- Tang, S; Terzic, B; Wang, IJ; Sarmiento, N; Sizov, K; Cui, Y; Takano, H; Marsh, ED; Zhou, Z; Coulter, DA. Altered NMDAR signaling underlies autistic-like features in mouse models of CDKL5 deficiency disorder. Nat Commun. 2019, 10, 2655. [Google Scholar] [CrossRef]
- Okuda, K; Takao, K; Watanabe, A; Miyakawa, T; Mizuguchi, M; Tanaka, T. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory. PloS one 2018, 13, e0196587. [Google Scholar] [CrossRef]
- Amendola, E; Zhan, Y; Mattucci, C; Castroflorio, E; Calcagno, E; Fuchs, C; Lonetti, G; Silingardi, D; Vyssotski, AL; Farley, D; et al. Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PloS one 2014, 9, e91613. [Google Scholar] [CrossRef]
- Mari, F; Azimonti, S; Bertani, I; Bolognese, F; Colombo, E; Caselli, R; Scala, E; Longo, I; Grosso, S; Pescucci, C; et al. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Human molecular genetics 2005, 14, 1935–1946. [Google Scholar] [CrossRef]
- Tang, S; Wang, IJ; Yue, C; Takano, H; Terzic, B; Pance, K; Lee, JY; Cui, Y; Coulter, DA; Zhou, Z. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice. J Neurosci. 2017, 37, 7420–7437. [Google Scholar] [CrossRef]
- Mulcahey, PJ; Tang, S; Takano, H; White, A; Davila Portillo, DR; Kane, OM; Marsh, ED; Zhou, Z; Coulter, DA. Aged heterozygous Cdkl5 mutant mice exhibit spontaneous epileptic spasms. Exp Neurol. 2020, 332, 113388. [Google Scholar] [CrossRef]
- Gennaccaro, L; Fuchs, C; Loi, M; Pizzo, R; Alvente, S; Berteotti, C; Lupori, L; Sagona, G; Galvani, G; Gurgone, A; et al. Age-Related Cognitive and Motor Decline in a Mouse Model of CDKL5 Deficiency Disorder is Associated with Increased Neuronal Senescence and Death. Aging Dis. 2021, 12, 764–785. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C; Gennaccaro, L; Trazzi, S; Bastianini, S; Bettini, S; Lo Martire, V; Ren, E; Medici, G; Zoccoli, G; Rimondini, R; et al. Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder. Neural plasticity 2018, 2018, 9726950. [Google Scholar] [CrossRef] [PubMed]
- Purtell, H; Dhamne, SC; Gurnani, S; Bainbridge, E; Modi, ME; Lammers, SHT; Super, CE; Hameed, MQ; Johnson, EL, 3rd; Sahin, M; et al. Electrographic spikes are common in wildtype mice. Epilepsy & behavior: E&B 2018, 89, 94–98. [Google Scholar] [CrossRef]
- Basser, PJ; Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996, 111, 209–219. [Google Scholar] [CrossRef]
- Basser, PJ; Mattiello, J; LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994, 103, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Basser, PJ; Pajevic, S; Pierpaoli, C; Duda, J; Aldroubi, A. In vivo fiber tractography using DT-MRI data. Magnetic resonance in medicine 2000, 44, 625–632. [Google Scholar] [CrossRef]
- Pierpaoli, C; Basser, PJ. Toward a quantitative assessment of diffusion anisotropy. Magnetic resonance in medicine 1996, 36, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Pierpaoli, C; Jezzard, P; Basser, PJ; Barnett, A; Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 1996, 201, 637–648. [Google Scholar] [CrossRef]
- Mori, S; van Zijl, PC. Diffusion weighting by the trace of the diffusion tensor within a single scan. Magnetic resonance in medicine 1995, 33, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Mori, S; Crain, BJ; Chacko, VP; van Zijl, PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999, 45, 265–269. [Google Scholar] [CrossRef]
- Xue, R; van Zijl, PC; Crain, BJ; Solaiyappan, M; Mori, S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magnetic resonance in medicine 1999, 42, 1123–1127. [Google Scholar] [CrossRef]
- Mori, S; Itoh, R; Zhang, J; Kaufmann, WE; van Zijl, PC; Solaiyappan, M; Yarowsky, P. Diffusion tensor imaging of the developing mouse brain. Magnetic resonance in medicine 2001, 46, 18–23. [Google Scholar] [CrossRef]
- O'Donnell, LJ; Westin, CF. An introduction to diffusion tensor image analysis. Neurosurg Clin N Am. 2011, 22, 185–196, viii. [Google Scholar] [CrossRef]
- Ackerman, JJH; Neil, JJ. Biophysics of Diffusion in Cells. In Diffusion MRI: Theory, Methods and Applications; Jones, DK, Ed.; Oxford U. Press: Oxford, 2010; pp. 110–124. [Google Scholar]
- Beaulieu, C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR in biomedicine 2002, 15, 435–455. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, D; Turner, R; Douek, P. Is water diffusion restricted in human brain white matter? An echo-planar NMR imaging study. Neuroreport 1993, 4, 887–890. [Google Scholar] [CrossRef]
- Norris, DG. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR in biomedicine 2001, 14, 77–93. [Google Scholar] [CrossRef]
- Tuch, DS; Reese, TG; Wiegell, MR; Van, JW. Diffusion MRI of Complex Neural Architecture. Neuron 2003, 40, 885–895. [Google Scholar] [CrossRef]
- Alexander, DC; Barker, GJ. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. NeuroImage 2005, 27, 357–367. [Google Scholar] [CrossRef]
- Wiegell, MR; Larsson, HB; Wedeen, VJ. Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 2000, 217, 897–903. [Google Scholar] [CrossRef]
- Vos, SB; Jones, DK; Jeurissen, B; Viergever, MA; Leemans, A. The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. NeuroImage 2012, 59, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Tuch, DS; Reese, TG; Wiegell, MR; Makris, N; Belliveau, JW; Wedeen, VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic resonance in medicine 2002, 48, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Alexander, AL; Hasan, KM; Lazar, M; Tsuruda, JS; Parker, DL. Analysis of partial volume effects in diffusion-tensor MRI. Magnetic resonance in medicine 2001, 45, 770–780. [Google Scholar] [CrossRef]
- Wang, Q; Ding, SL; Li, Y; Royall, J; Feng, D; Lesnar, P; Graddis, N; Naeemi, M; Facer, B; Ho, A; et al. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell. 2020, 181, 936–953.e920. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie-Graham, A; Jones, ES; Shattuck, DW; Dinov, ID; Bota, M; Toga, AW. The informatics of a C57BL/6J mouse brain atlas. Neuroinformatics 2003, 1, 397–410. [Google Scholar] [CrossRef]
- Science, AIfB. Allen Mouse Brain Atlas. 2020. Available online: https://mouse.brain-map.org/static/atlas.
- Stapleton, MC; Koch, SP; Cortes, DRE; Wyman, S; Schwab, KE; Mueller, S; McKennan, CG; Boehm-Sturm, P; Wu, YL. Apolipoprotein-E deficiency leads to brain network alteration characterized by diffusion MRI and graph theory. Frontiers in neuroscience 2023, 17, 1183312. [Google Scholar] [CrossRef]
- Ashburner, J; Friston, KJ. Unified segmentation. NeuroImage 2005, 26, 839–851. [Google Scholar] [CrossRef]
- Friston, KJ; Holmes, AP; Worsley, KJ; Poline, J-P; Frith, CD; Frackowiak, RSJ. Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 1994, 2, 189–210. [Google Scholar] [CrossRef]
- Hikishima, K; Komaki, Y; Seki, F; Ohnishi, Y; Okano, HJ; Okano, H. In vivo microscopic voxel-based morphometry with a brain template to characterize strain-specific structures in the mouse brain. Sci Rep. 2017, 7, 85. [Google Scholar] [CrossRef]
- Klein, S; Staring, M; Murphy, K; Viergever, MA; Pluim, JP. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 2010, 29, 196–205. [Google Scholar] [CrossRef]
- Scharwächter, L; Schmitt, FJ; Pallast, N; Fink, GR; Aswendt, M. Network analysis of neuroimaging in mice. NeuroImage 2022, 253, 119110. [Google Scholar] [CrossRef] [PubMed]
- Ingalhalikar, M; Parker, D; Ghanbari, Y; Smith, A; Hua, K; Mori, S; Abel, T; Davatzikos, C; Verma, R. Connectome and Maturation Profiles of the Developing Mouse Brain Using Diffusion Tensor Imaging. Cerebral cortex (New York, NY: 1991) 2015, 25, 2696–2706. [Google Scholar] [CrossRef]
- Rubinov, M; Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Bullmore, E; Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Benjamini, Y; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Landman, BA; Wan, H; Bogovic, JA; Bazin, PL; Prince, JL. Resolution of Crossing Fibers with Constrained Compressed Sensing using Traditional Diffusion Tensor MRI. Proc SPIE Int Soc Opt Eng. 2010, 7623, 76231h. [Google Scholar] [CrossRef] [PubMed]
- Wong, HH; Chou, CYC; Watt, AJ; Sjöström, PJ. Comparing mouse and human brains. Elife 2023, 12. [Google Scholar] [CrossRef]
- Sun, T; Hevner, RF. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci. 2014, 15, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Xu, N; LaGrow, TJ; Anumba, N; Lee, A; Zhang, X; Yousefi, B; Bassil, Y; Clavijo, GP; Khalilzad Sharghi, V; Maltbie, E; et al. Functional Connectivity of the Brain Across Rodents and Humans. Frontiers in neuroscience 2022, 16, 816331. [Google Scholar] [CrossRef]
- Li, C; Li, J; Lai, L; Li, S; Yan, S. Genetically engineered pig models of neurological diseases. Ageing and Neurodegenerative Diseases 2022, 2, 13. [Google Scholar] [CrossRef]
- Kjer, HM; Andersson, M; He, Y; Pacureanu, A; Daducci, A; Pizzolato, M; Salditt, T; Robisch, A-L; Eckermann, M; Töpperwien, M; et al. Bridging the 3D geometrical organisation of white matter pathways across anatomical length scales and species. eLife 2025, 13, RP94917. [Google Scholar] [CrossRef]
- Zhang, J. Diffusion tensor imaging of white matter pathology in the mouse brain. Imaging Med. 2010, 2, 623–632. [Google Scholar] [CrossRef]
- Müller, HP; Roselli, F; Rasche, V; Kassubek, J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Frontiers in neuroscience 2020, 14, 734. [Google Scholar] [CrossRef]
- Abhinav, K; Yeh, FC; Mansouri, A; Zadeh, G; Fernandez-Miranda, JC. High-definition fiber tractography for the evaluation of perilesional white matter tracts in high-grade glioma surgery. Neuro Oncol. 2015, 17, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Yeh, FC; Wedeen, VJ; Tseng, WY. Generalized q-sampling imaging. IEEE Trans Med Imaging 2010, 29, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Yeh, FC; Verstynen, TD; Wang, Y; Fernandez-Miranda, JC; Tseng, WY. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS one 2013, 8, e80713. [Google Scholar] [CrossRef]
- Conturo, TE; Lori, NF; Cull, TS; Akbudak, E; Snyder, AZ; Shimony, JS; McKinstry, RC; Burton, H; Raichle, ME. Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, 10422–10427. [Google Scholar] [CrossRef] [PubMed]
- Shen, CY; Tyan, YS; Kuo, LW; Wu, CW; Weng, JC. Quantitative Evaluation of Rabbit Brain Injury after Cerebral Hemisphere Radiation Exposure Using Generalized q-Sampling Imaging. PloS one 2015, 10, e0133001. [Google Scholar] [CrossRef] [PubMed]
- Lim, SY; Tyan, YS; Chao, YP; Nien, FY; Weng, JC. New insights into the developing rabbit brain using diffusion tensor tractography and generalized q-sampling MRI. PloS one 2015, 10, e0119932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H; Wang, Y; Lu, T; Qiu, B; Tang, Y; Ou, S; Tie, X; Sun, C; Xu, K; Wang, Y. Differences between generalized q-sampling imaging and diffusion tensor imaging in the preoperative visualization of the nerve fiber tracts within peritumoral edema in brain. Neurosurgery 2013, 73, 1044–1053; discussion 1053. [Google Scholar] [CrossRef]
- Yeh, FC; Tseng, WY. Sparse solution of fiber orientation distribution function by diffusion decomposition. PloS one 2013, 8, e75747. [Google Scholar] [CrossRef]
- Yeh, FC; Wedeen, VJ; Tseng, WY. Estimation of fiber orientation and spin density distribution by diffusion deconvolution. NeuroImage 2011, 55, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Berman, JI; Lanza, MR; Blaskey, L; Edgar, JC; Roberts, TP. High angular resolution diffusion imaging probabilistic tractography of the auditory radiation. AJNR American journal of neuroradiology 2013, 34, 1573–1578. [Google Scholar] [CrossRef]
- Caiazzo, G; Fratello, M; Di Nardo, F; Trojsi, F; Tedeschi, G; Esposito, F. Structural connectome with high angular resolution diffusion imaging MRI: assessing the impact of diffusion weighting and sampling on graph-theoretic measures. Neuroradiology 2018, 60, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q; He, H; Gong, T; Li, C; Liang, P; Qian, T; Sun, Y; Ding, Q; Li, K; Zhong, J. Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings. Scientific Data 2020, 7, 157. [Google Scholar] [CrossRef]
- Li, CX; Patel, S; Zhang, X. Evaluation of multi-shell diffusion MRI acquisition strategy on quantitative analysis using multi-compartment models. Quant Imaging Med Surg. 2020, 10, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Vanden Bulcke, C; Stölting, A; Maric, D; Macq, B; Absinta, M; Maggi, P. Comparative overview of multi-shell diffusion MRI models to characterize the microstructure of multiple sclerosis lesions and periplaques. NeuroImage: Clinical 2024, 42, 103593. [Google Scholar] [CrossRef] [PubMed]
- Descoteaux, M; Deriche, R; Knosche, TR; Anwander, A. Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 2009, 28, 269–286. [Google Scholar] [CrossRef]
- Wedeen, VJ; Wang, RP; Schmahmann, JD; Benner, T; Tseng, WY; Dai, G; Pandya, DN; Hagmann, P; D'Arceuil, H; de Crespigny, AJ. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 2008, 41, 1267–1277. [Google Scholar] [CrossRef]
- Mori, S; Barker, PB. Diffusion magnetic resonance imaging: its principle and applications. Anat Rec. 1999, 257, 102–109. [Google Scholar] [CrossRef]
- Winklewski, PJ; Sabisz, A; Naumczyk, P; Jodzio, K; Szurowska, E; Szarmach, A. Understanding the Physiopathology Behind Axial and Radial Diffusivity Changes-What Do We Know? Front Neurol 2018, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Wheeler-Kingshott, CA; Cercignani, M. About "axial" and "radial" diffusivities. Magnetic resonance in medicine 2009, 61, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Sun, SW; Liang, HF; Trinkaus, K; Cross, AH; Armstrong, RC; Song, SK. Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magnetic resonance in medicine 2006, 55, 302–308. [Google Scholar] [CrossRef]
- Budde, MD; Xie, M; Cross, AH; Song, SK. Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci. 2009, 29, 2805–2813. [Google Scholar] [CrossRef]
- Song, SK; Sun, SW; Ramsbottom, MJ; Chang, C; Russell, J; Cross, AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 2002, 17, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Song, SK; Yoshino, J; Le, TQ; Lin, SJ; Sun, SW; Cross, AH; Armstrong, RC. Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 2005, 26, 132–140. [Google Scholar] [CrossRef]
- Kumar, R; Nguyen, HD; Macey, PM; Woo, MA; Harper, RM. Regional brain axial and radial diffusivity changes during development. Journal of neuroscience research 2012, 90, 346–355. [Google Scholar] [CrossRef]
- Barnea-Goraly, N; Menon, V; Eckert, M; Tamm, L; Bammer, R; Karchemskiy, A; Dant, CC; Reiss, AL. White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral cortex (New York, NY: 1991) 2005, 15, 1848–1854. [Google Scholar] [CrossRef]
- Mukherjee, P; Miller, JH; Shimony, JS; Philip, JV; Nehra, D; Snyder, AZ; Conturo, TE; Neil, JJ; McKinstry, RC. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR American journal of neuroradiology 2002, 23, 1445–1456. [Google Scholar] [PubMed]
- Counsell, SJ; Shen, Y; Boardman, JP; Larkman, DJ; Kapellou, O; Ward, P; Allsop, JM; Cowan, FM; Hajnal, JV; Edwards, AD; et al. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 2006, 117, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Quinones, JF; Hildebrandt, A; Pavan, T; Thiel, CM; Heep, A. Preterm birth and neonatal white matter microstructure in in-vivo reconstructed fiber tracts among audiovisual integration brain regions. Developmental Cognitive Neuroscience 2023, 60, 101202. [Google Scholar] [CrossRef]
- Dibble, M; Ang, JZ; Mariga, L; Molloy, EJ; Bokde, ALW. Diffusion Tensor Imaging in Very Preterm, Moderate-Late Preterm and Term-Born Neonates: A Systematic Review. The Journal of pediatrics 2021, 232, 48–58.e43. [Google Scholar] [CrossRef] [PubMed]
- Rogers, CE; Smyser, T; Smyser, CD; Shimony, J; Inder, TE; Neil, JJ. Regional white matter development in very preterm infants: perinatal predictors and early developmental outcomes. Pediatric research 2016, 79, 87–95. [Google Scholar] [CrossRef]
- Vandermosten, M; Boets, B; Wouters, J; Ghesquière, P. A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neuroscience and biobehavioral reviews 2012, 36, 1532–1552. [Google Scholar] [CrossRef]
- Vandermosten, M; Boets, B; Poelmans, H; Sunaert, S; Wouters, J; Ghesquière, P. A tractography study in dyslexia: neuroanatomic correlates of orthographic, phonological and speech processing. Brain 2012, 135, 935–948. [Google Scholar] [CrossRef]
- El-Sady, S; Mohammad, SA; Aboualfotouh Ahmed, K; Khattab, AN; Nashaat, NH; Orabi, G; Abdelraouf, ER. Correlation between diffusion tensor imaging measures and the reading and cognitive performance of Arabic readers: dyslexic children perspective. Neuroradiology 2020, 62, 525–531. [Google Scholar] [CrossRef]
- Mac Donald, CL; Johnson, AM; Cooper, D; Nelson, EC; Werner, NJ; Shimony, JS; Snyder, AZ; Raichle, ME; Witherow, JR; Fang, R; et al. Detection of blast-related traumatic brain injury in U.S. military personnel. The New England journal of medicine 2011, 364, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Aung, WY; Mar, S; Benzinger, TL. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 2013, 5, 427–440. [Google Scholar] [CrossRef]
- Arfanakis, K; Haughton, VM; Carew, JD; Rogers, BP; Dempsey, RJ; Meyerand, ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR American journal of neuroradiology 2002, 23, 794–802. [Google Scholar]
- Robinson, S; Berglass, JB; Denson, JL; Berkner, J; Anstine, CV; Winer, JL; Maxwell, JR; Qiu, J; Yang, Y; Sillerud, LO; et al. Microstructural and microglial changes after repetitive mild traumatic brain injury in mice. Journal of neuroscience research 2017, 95, 1025–1035. [Google Scholar] [CrossRef]
- Bennett, RE; Mac Donald, CL; Brody, DL. Diffusion tensor imaging detects axonal injury in a mouse model of repetitive closed-skull traumatic brain injury. Neuroscience letters 2012, 513, 160–165. [Google Scholar] [CrossRef]
- Du, G; Lewis, MM; Kanekar, S; Sterling, NW; He, L; Kong, L; Li, R; Huang, X. Combined Diffusion Tensor Imaging and Apparent Transverse Relaxation Rate Differentiate Parkinson Disease and Atypical Parkinsonism. AJNR American journal of neuroradiology 2017, 38, 966–972. [Google Scholar] [CrossRef]
- Metwalli, NS; Benatar, M; Nair, G; Usher, S; Hu, X; Carew, JD. Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res. 2010, 1348, 156–164. [Google Scholar] [CrossRef]
- Kamagata, K; Andica, C; Hatano, T; Ogawa, T; Takeshige-Amano, H; Ogaki, K; Akashi, T; Hagiwara, A; Fujita, S; Aoki, S. Advanced diffusion magnetic resonance imaging in patients with Alzheimer's and Parkinson's diseases. Neural Regen Res. 2020, 15, 1590–1600. [Google Scholar] [CrossRef]
- Lin, CP; Frigerio, I; Bol, J; Bouwman, MMA; Wesseling, AJ; Dahl, MJ; Rozemuller, AJM; van der Werf, YD; Pouwels, PJW; van de Berg, WDJ; et al. Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease. Transl Neurodegener. 2024, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Naidu, S; Kaufmann, WE; Abrams, MT; Pearlson, GD; Lanham, DC; Fredericksen, KA; Barker, PB; Horska, A; Golay, X; Mori, S; et al. Neuroimaging studies in Rett syndrome. Brain Dev. 2001, 23 Suppl 1, S62–71. [Google Scholar] [CrossRef] [PubMed]
- Awad, PN; Zerbi, V; Johnson-Venkatesh, EM; Damiani, F; Pagani, M; Markicevic, M; Nickles, S; Gozzi, A; Umemori, H; Fagiolini, M. CDKL5 sculpts functional callosal connectivity to promote cognitive flexibility. Mol Psychiatry 2024, 29, 1698–1709. [Google Scholar] [CrossRef]
- Olds, J. Learning and the hippocampus. Rev Can Biol. 1972, 31, Suppl:215–238. [Google Scholar]
- McClelland, JL; McNaughton, BL; O'Reilly, RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995, 102, 419–457. [Google Scholar] [CrossRef]
- Biane, JS; Ladow, MA; Stefanini, F; Boddu, SP; Fan, A; Hassan, S; Dundar, N; Apodaca-Montano, DL; Zhou, LZ; Fayner, V; et al. Neural dynamics underlying associative learning in the dorsal and ventral hippocampus. Nature neuroscience 2023, 26, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, KC; Delgado, MR. Contributions of the hippocampus to feedback learning. Cogn Affect Behav Neurosci. 2015, 15, 861–877. [Google Scholar] [CrossRef]
- Rogan, MT; Staubli, UV; LeDoux, JE. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 1997, 390, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Dityatev, AE; Bolshakov, VY. Amygdala, long-term potentiation, and fear conditioning. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 2005, 11, 75–88. [Google Scholar] [CrossRef]
- Kochli, DE; Thompson, EC; Fricke, EA; Postle, AF; Quinn, JJ. The amygdala is critical for trace, delay, and contextual fear conditioning. Learning & memory (Cold Spring Harbor, NY) 2015, 22, 92–100. [Google Scholar] [CrossRef]
- Skelly, MJ; Ariwodola, OJ; Weiner, JL. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala. Neuropharmacology 2017, 113, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Kim, WB; Cho, JH. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala. Neuron 2017, 95, 1129–1146.e1125. [Google Scholar] [CrossRef] [PubMed]
- Guillamón-Vivancos, T; Favaloro, F; Dori, F; López-Bendito, G. The superior colliculus: New insights into an evolutionarily ancient structure. Current Opinion in Neurobiology 2024, 89, 102926. [Google Scholar] [CrossRef] [PubMed]
- Ito, S; Feldheim, DA. The Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function. Front Neural Circuits 2018, 12, 10. [Google Scholar] [CrossRef]
- Goossens, HH; van Opstal, AJ. Optimal control of saccades by spatial-temporal activity patterns in the monkey superior colliculus. PLoS Comput Biol. 2012, 8, e1002508. [Google Scholar] [CrossRef]
- Yuan, P; Raz, N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neuroscience and biobehavioral reviews 2014, 42, 180–192. [Google Scholar] [CrossRef]
- Burzynska, AZ; Nagel, IE; Preuschhof, C; Gluth, S; Bäckman, L; Li, SC; Lindenberger, U; Heekeren, HR. Cortical thickness is linked to executive functioning in adulthood and aging. Hum Brain Mapp. 2012, 33, 1607–1620. [Google Scholar] [CrossRef]
- Cao, J; Xu, J; Chen, S; Fan, F; Chen, M; Liu, F; Li, G. Odor-mediated contextual learning induced memory consolidation and hippocampus development in neonate rat. Neuroreport 2020, 31, 64–68. [Google Scholar] [CrossRef]
- Yau, SY; Li, A; So, KF. Involvement of Adult Hippocampal Neurogenesis in Learning and Forgetting. Neural plasticity 2015, 2015, 717958. [Google Scholar] [CrossRef]
- Morris, RG; Garrud, P; Rawlins, JN; O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 1982, 297, 681–683. [Google Scholar] [CrossRef]
- Amsel, A. Hippocampal function in the rat: cognitive mapping or vicarious trial and error? Hippocampus 1993, 3, 251–256. [Google Scholar] [CrossRef] [PubMed]
- D'Hooge, R; De Deyn, PP. Applications of the Morris water maze in the study of learning and memory. Brain research Brain research reviews 2001, 36, 60–90. [Google Scholar] [CrossRef] [PubMed]
- Wenk, GL. Assessment of spatial memory using the radial arm maze and Morris water maze. In Current protocols in neuroscience; 2004; Volume Chapter 8:Unit 8.5A. [Google Scholar] [CrossRef]
- Sullivan, EV; Rosenbloom, MJ; Deshmukh, A; Desmond, JE; Pfefferbaum, A. Alcohol and the Cerebellum: Effects on Balance, Motor Coordination, and Cognition. Alcohol Health Res World 1995, 19, 138–141. [Google Scholar]
- Kansal, K; Yang, Z; Fishman, AM; Sair, HI; Ying, SH; Jedynak, BM; Prince, JL; Onyike, CU. Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain 2017, 140, 707–720. [Google Scholar] [CrossRef]
- Johnson, DM; Illig, KR; Behan, M; Haberly, LB. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that "primary" olfactory cortex functions like "association" cortex in other sensory systems. J Neurosci. 2000, 20, 6974–6982. [Google Scholar] [CrossRef]
- Borghei, A; Kelly, R; Pearce, JJ; Stoub, TR; Sani, S. Structural Connectivity of the Human Piriform Cortex: an Exploratory Study. Neurosurgery 2024, 94, 856–863. [Google Scholar] [CrossRef]
- Miller, WL. The Hypothalamic-Pituitary-Adrenal Axis: A Brief History. Horm Res Paediatr. 2018, 89, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Fong, H; Zheng, J; Kurrasch, D. The structural and functional complexity of the integrative hypothalamus. Science 2023, 382, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Basso, MA; May, PJ. Circuits for Action and Cognition: A View from the Superior Colliculus. Annu Rev Vis Sci. 2017, 3, 197–226. [Google Scholar] [CrossRef]
- Basso, MA; Bickford, ME; Cang, J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021, 109, 918–937. [Google Scholar] [CrossRef] [PubMed]
- Ghitani, N; Bayguinov, PO; Basso, MA; Jackson, MB. A sodium afterdepolarization in rat superior colliculus neurons and its contribution to population activity. J Neurophysiol. 2016, 116, 191–200. [Google Scholar] [CrossRef]
- Sporns, O; Tononi, G; Kötter, R. The human connectome: A structural description of the human brain. PLoS Comput Biol. 2005, 1, e42. [Google Scholar] [CrossRef]
- He, Y; Evans, A. Graph theoretical modeling of brain connectivity. Current opinion in neurology 2010, 23, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Bassett, DS; Bullmore, ET. Human brain networks in health and disease. Current opinion in neurology 2009, 22, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Lo, CY; He, Y; Lin, CP. Graph theoretical analysis of human brain structural networks. Reviews in the neurosciences 2011, 22, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S; Haneef, Z. Graph theory findings in the pathophysiology of temporal lobe epilepsy. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 2014, 125, 1295–1305. [Google Scholar] [CrossRef]
- Stam, CJ; Reijneveld, JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics 2007, 1, 3. [Google Scholar] [CrossRef]
- Reijneveld, JC; Ponten, SC; Berendse, HW; Stam, CJ. The application of graph theoretical analysis to complex networks in the brain. Clinical Neurophysiology 2007, 118, 2317–2331. [Google Scholar] [CrossRef]
- Vecchio, F; Miraglia, F; Maria Rossini, P. Connectome: Graph theory application in functional brain network architecture. Clinical Neurophysiology Practice 2017, 2, 206–213. [Google Scholar] [CrossRef]
- Rubinov, M; Sporns, O. Weight-conserving characterization of complex functional brain networks. NeuroImage 2011, 56, 2068–2079. [Google Scholar] [CrossRef]
- Cohen, JR; D'Esposito, M. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition. J Neurosci. 2016, 36, 12083–12094. [Google Scholar] [CrossRef]
- Bassett, DS; Bullmore, E. Small-world brain networks. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 2006, 12, 512–523. [Google Scholar] [CrossRef]
- Bassett, DS; Bullmore, ET. Small-World Brain Networks Revisited. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 2017, 23, 499–516. [Google Scholar] [CrossRef]
- Kukla, B; Anthony, M; Chen, S; Turnbull, A; Baran, TM; Lin, FV. Brain Small-Worldness Properties and Perceived Fatigue in Mild Cognitive Impairment. J Gerontol A Biol Sci Med Sci. 2022, 77, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Medina, JF; Repa, JC; Mauk, MD; LeDoux, JE. Parallels between cerebellum- and amygdala-dependent conditioning. Nat Rev Neurosci. 2002, 3, 122–131. [Google Scholar] [CrossRef]
- Téllez-Zenteno, JF; Hernández-Ronquillo, L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat. 2012, 2012, 630853. [Google Scholar] [CrossRef]
- Sinjab, B; Martinian, L; Sisodiya, SM; Thom, M. Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: a postmortem study. Epilepsia 2013, 54, 2125–2133. [Google Scholar] [CrossRef]
- Feng, L; Motelow, JE; Ma, C; Biche, W; McCafferty, C; Smith, N; Liu, M; Zhan, Q; Jia, R; Xiao, B; et al. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei. J Neurosci. 2017, 37, 11441–11454. [Google Scholar] [CrossRef]
- Park, KM; Kim, TH; Mun, CW; Shin, KJ; Ha, SY; Park, J; Lee, BI; Lee, H-J; Kim, SE. Reduction of ipsilateral thalamic volume in temporal lobe epilepsy with hippocampal sclerosis. Journal of Clinical Neuroscience 2018, 55, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Cho, KH; Lee, HJ; Heo, K; Kim, SE; Lee, DA; Park, KM. Intrinsic Thalamic Network in Temporal Lobe Epilepsy With Hippocampal Sclerosis According to Surgical Outcomes. [CrossRef] [PubMed]
- Fisher, RS. Deep brain stimulation of thalamus for epilepsy. Neurobiology of disease 2023, 179, 106045. [Google Scholar] [CrossRef]
- Bouwens van der Vlis, TAM; Schijns, O; Schaper, F; Hoogland, G; Kubben, P; Wagner, L; Rouhl, R; Temel, Y; Ackermans, L. Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy. Neurosurg Rev. 2019, 42, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Shine, JM; Lewis, LD; Garrett, DD; Hwang, K. The impact of the human thalamus on brain-wide information processing. Nature Reviews Neuroscience 2023, 24, 416–430. [Google Scholar] [CrossRef]
- Marcuse, LV; Langan, M; Hof, PR; Panov, F; Saez, I; Jimenez-Shahed, J; Figee, M; Mayberg, H; Yoo, JY; Ghatan, S; et al. The thalamus: Structure, function, and neurotherapeutics. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 2025, 22, e00550. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, M; Magnani, FG; Barbadoro, F; Ippoliti, C; Stanziano, M; Clementi, L; Nigri, A; Nanetti, L; Marino, S; La Porta, F; et al. Thalamus and consciousness: a systematic review on thalamic nuclei associated with consciousness. Front Neurol. 2025, 16, 1509668. [Google Scholar] [CrossRef] [PubMed]
- Specchio, N; Trivisano, M; Lenge, M; Ferretti, A; Mei, D; Parrini, E; Napolitano, A; Rossi-Espagnet, C; Talenti, G; Longo, D; et al. CDKL5 deficiency disorder: progressive brain atrophy may be part of the syndrome. Cerebral cortex (New York, NY: 1991) 2023, 33, 9709–9717. [Google Scholar] [CrossRef]
- Rodak, M; Jonderko, M; Rozwadowska, P; Machnikowska-Sokołowska, M; Paprocka, J. CDKL5 Deficiency Disorder (CDD)—Rare Presentation in Male. Children 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Takeguchi, R; Akaba, Y; Kuroda, M; Tanaka, R; Tanaka, T; Itoh, M; Takahashi, S. Neurophysiological and brain structural insights into cyclin-dependent kinase-like 5 deficiency disorder: Visual and auditory evoked potentials and MRI analysis. J Neurol Sci. 2024, 461, 123063. [Google Scholar] [CrossRef]
- Lupori, L; Sagona, G; Fuchs, C; Mazziotti, R; Stefanov, A; Putignano, E; Napoli, D; Strettoi, E; Ciani, E; Pizzorusso, T. Site-specific abnormalities in the visual system of a mouse model of CDKL5 deficiency disorder. Human molecular genetics 2019, 28, 2851–2861. [Google Scholar] [CrossRef]
- Carli, S; Chaabane, L; Butti, C; De Palma, C; Aimar, P; Salio, C; Vignoli, A; Giustetto, M; Landsberger, N; Frasca, A. In vivo magnetic resonance spectroscopy in the brain of Cdkl5 null mice reveals a metabolic profile indicative of mitochondrial dysfunctions. J Neurochem. 2021, 157, 1253–1269. [Google Scholar] [CrossRef]
- Serrano, RJ; Lee, C; Douek, AM; Kaslin, J; Bryson-Richardson, RJ; Sztal, TE. Novel preclinical model for CDKL5 deficiency disorder. Disease models & mechanisms 2022, 15. [Google Scholar] [CrossRef]
- Lupori, L; Sagona, G; Fuchs, C; Mazziotti, R; Stefanov, A; Putignano, E; Napoli, D; Strettoi, E; Ciani, E; Pizzorusso.
- Benarroch, E. What Are the Functions of the Superior Colliculus and Its Involvement in Neurologic Disorders? Neurology 2023, 100, 784–790. [Google Scholar] [CrossRef]
- Quintiliani, M; Ricci, D; Petrianni, M; Leone, S; Orazi, L; Amore, F; Gambardella, ML; Contaldo, I; Veredice, C; Perulli, M; et al. Cortical Visual Impairment in CDKL5 Deficiency Disorder. Front Neurol. 2021, 12, 805745. [Google Scholar] [CrossRef]
- Adhikari, A; Buchanan, FKB; Fenton, TA; Cameron, DL; Halmai, J; Copping, NA; Fink, KD; Silverman, JL. Touchscreen cognitive deficits, hyperexcitability and hyperactivity in males and females using two models of Cdkl5 deficiency. Human molecular genetics 2022, 31, 3032–3050. [Google Scholar] [CrossRef]
- Mottolese, N; Uguagliati, B; Tassinari, M; Cerchier, CB; Loi, M; Candini, G; Rimondini, R; Medici, G; Trazzi, S; Ciani, E. Voluntary Running Improves Behavioral and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Biomolecules 2023, 13. [Google Scholar] [CrossRef] [PubMed]
- Downs, J; Jacoby, P; Specchio, N; Cross, H; Amin, S; Bahi-Buisson, N; Rajaraman, R; Suter, B; Devinsky, O; Aimetti, A; et al. Effects of ganaxolone on non-seizure outcomes in CDKL5 Deficiency Disorder: Double-blind placebo-controlled randomized trial. Eur J Paediatr Neurol. 2024, 51, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Lau, T; Miller, T; Klein, T; Benbadis, SR; Vale, FL. Temporal lobe surgery in medically refractory epilepsy: a comparison between populations based on MRI findings. Seizure 2014, 23, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Tabibian, F; Mehvari Habibabadi, J; Maracy, MR; Kahnouji, H; Rahimi, M; Rezaei, M. Evaluation of Cognitive Impairment in Refractory Temporal Lobe Epilepsy Patients Concerning Structural Brain Lesions. Basic Clin Neurosci. 2023, 14, 385–395. [Google Scholar] [CrossRef]
- Frazzini, V; Cousyn, L; Navarro, V. Semiology, EEG, and neuroimaging findings in temporal lobe epilepsies. Handbook of clinical neurology 2022, 187, 489–518. [Google Scholar] [CrossRef]
- Zhang, C; Hu, W; Wu, Y; Li, G; Yang, C; Wu, T. Altered Directed-Connectivity Network in Temporal Lobe Epilepsy: A MEG Study. Sensors 2025, 25. [Google Scholar] [CrossRef]
- Ives-Deliperi, V; Butler, JT. Mechanisms of cognitive impairment in temporal lobe epilepsy: A systematic review of resting-state functional connectivity studies. Epilepsy & Behavior 2021, 115, 107686. [Google Scholar] [CrossRef]
- Ishizaki, T; Maesawa, S; Suzuki, T; Hashida, M; Ito, Y; Yamamoto, H; Tanei, T; Natsume, J; Hoshiyama, M; Saito, R. Frequency-specific network changes in mesial temporal lobe epilepsy: Analysis of chronic and transient dysfunctions in the temporo-amygdala-orbitofrontal network using magnetoencephalography. Epilepsia open. 2025, 10, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Alfiler, L. ALLEN BRAIN ATLAS API. 2024. [Google Scholar]
- Terzic, B; Davatolhagh, MF; Ho, Y; Tang, S; Liu, YT; Xia, Z; Cui, Y; Fuccillo, MV; Zhou, Z. Temporal manipulation of Cdkl5 reveals essential postdevelopmental functions and reversible CDKL5 deficiency disorder-related deficits. J Clin Invest. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Kind, PC; Bird, A. CDKL5 deficiency disorder: a pathophysiology of neural maintenance. J Clin Invest. 2021, 131. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
