Submitted:
03 February 2026
Posted:
04 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Scope of the Study and Investigated Configurations
2.2. Definition of the Shear Correction Factor
2.3. Parametric Geometry and Pixel-Based Representation
2.3.1. Sinusoidal Fluting Geometry
2.3.2. Pixel Image Generation and Phase Encoding
- background (void): intensity ,
- liners: intensity ,
- fluting(s): intensity .
2.4. Pixel-Based Identification of
2.4.1. Energy-Consistent Formulation
2.4.2. Pixel Discretization and Material Mapping
2.4.3. Construction of the 2D Shear-Stress Shape Function
2.4.4. Discrete Evaluation of and
2.5. Global Sensitivity Analysis Using Latin Hypercube Sampling
2.5.1. Parameter Vectors
2.5.2. Parameter Ranges and Feasibility Constraints
- mm,
- mm,
- mm,
- mm,
- GPa,
- GPa.
- mm,
- mm,
- mm,
- mm,
- GPa,
- GPa.
2.5.3. LHS Sampling Strategy
- 1.
- generate pixel geometry,
- 2.
- assign shear modulus field ,
- 3.
- compute the 2D shape function using Eqs. (12)–(15),
- 4.
- evaluate by Eq. (16),
- 5.
- compute by Eq. (1).
2.5.4. Normalized global sensitivity metrics
2.6. Computational Implementation and Reproducibility
3. Results
3.1. Dataset Overview and Numerical Stability
3.2. Distribution of the Shear Correction Factor
3.3. Global Sensitivity: Normalized Effects (%/%)
3.4. Response Surfaces for the Dominant Geometric Drivers
3.5. Material Contrast Effects and Key Interactions
3.6. Comparison Between 3-ply and 5-ply Sensitivity Patterns
4. Discussion
4.1. Reliability of the Dataset and Numerical Robustness
4.2. Global Variability of the Shear Correction Factor
4.3. Dominant Parameters and Normalized Sensitivity Patterns
4.4. Physical Interpretation via Response Surfaces
4.5. Role of Material Contrast and Interaction Effects
4.6. Comparison Between 3-ply and 5-ply Systems
4.7. Implications for Modeling and Design
5. Conclusions
- 1.
- The resolution sensitivity study confirmed that the computed shear correction factors are only weakly affected by pixel refinement. The small relative variations observed for both 3-ply and 5-ply configurations demonstrate that the identified trends are intrinsic to the structural parameters rather than discretization artefacts, supporting the reliability of the proposed methodology.
- 2.
- The distributions of reveal substantial variability across the investigated parameter space, with significantly broader ranges for 5-ply boards compared to 3-ply boards. This increased dispersion reflects the additional deformation mechanisms and interaction effects introduced by multiple flutings and intermediate liners, indicating that cannot be treated as a universal constant.
- 3.
- Normalized sensitivity indices consistently identify fluting geometry—particularly flute height and period—as the primary drivers of the shear correction factor in both configurations. These parameters exert a stronger influence on than material properties alone, underscoring the central role of geometric design in governing transverse shear behavior.
- 4.
- Response surfaces and interaction plots demonstrate pronounced nonlinear coupling between geometric parameters as well as between geometry and material contrast. In multiwall configurations, the contribution of each fluting family is not additive, and interactions between layers play a decisive role in shaping the effective shear response.
- 5.
- While shear-modulus ratios between fluting and liners significantly affect , their influence is strongly dependent on the underlying geometry. Material contrast can either amplify or suppress geometric effects, explaining observed differences between sensitivity measures and reinforcing the need for multidimensional analysis.
- 6.
- Although certain drivers of , such as fluting geometry, are universal, multiwall (5-ply) boards exhibit additional configuration-specific sensitivities associated with the middle liner and the second fluting layer. Consequently, conclusions drawn from single-wall systems cannot be directly extrapolated to more complex corrugated structures.
- 7.
- The results demonstrate that adopting a single, fixed shear correction factor—commonly used in simplified beam and plate models—may lead to significant inaccuracies, particularly for multiwall corrugated boards. The presented framework provides a physically grounded basis for developing configuration-dependent shear correction factors suitable for advanced numerical modeling and design-oriented reduced-order formulations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Fleck, N.A.; Deshpande, V.S.; Ashby, M.F. Micro-architectured materials: Past, present and future. Proc. R. Soc. A, 2010; 466. [Google Scholar]
- Wadley, H.N.G. Multifunctional periodic cellular metals. Philos. Trans. R. Soc. A 2006, 364. [Google Scholar] [CrossRef]
- Schaedler, T.A.; Carter, W.B. Architected Cellular Materials. Annu. Rev. Mater. Res. 2016, 46. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Hori, M. Micromechanics: Overall Properties of Heterogeneous Materials; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Biancolini, M.E. Evaluation of equivalent stiffness properties of corrugated board. Compos. Struct. 2005, 69. [Google Scholar] [CrossRef]
- Talbi, N.; Batti, A.; Ayad, R.; Guo, Y.Q. An analytical homogenization model for finite element modelling of corrugated cardboard. Compos. Struct. 2009, 88. [Google Scholar] [CrossRef]
- Buannic, N.; Cartraud, P.; Quesnel, T. Homogenization of corrugated core sandwich panels. Compos. Struct. 2003, 59. [Google Scholar] [CrossRef]
- Suquet, P. Elements of homogenization for inelastic solid mechanics. In Homogenization Techniques for Composite Media; Sanchez-Palencia, E., Zaoui, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Garbowski, T.; Gajewski, T. Determination of transverse shear stiffness of sandwich panels with a corrugated core by numerical homogenization. Materials 2021, 14. [Google Scholar] [CrossRef]
- Maouche, M.-F.; Hecini, M. Analytical Homogenization Approach for Double-Wall Corrugated Cardboard Incorporating Constituent Layer Characterization. Appl. Mech. 2026, 7, 4. [Google Scholar] [CrossRef]
- Beck, M.; Fischerauer, G. Modeling Warp in Corrugated Cardboard Based on Homogenization Techniques for In-Process Measurement Applications. Appl. Sci. 2022, 12, 1684. [Google Scholar] [CrossRef]
- Aduke, R.N.; Venter, M.P.; Coetzee, C.J. An Analysis of Numerical Homogenisation Methods Applied on Corrugated Paperboard. Math. Comput. Appl. 2023, 28, 46. [Google Scholar] [CrossRef]
- Reissner, E. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 1945, 12. [Google Scholar] [CrossRef]
- Mindlin, R.D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 1951, 18. [Google Scholar] [CrossRef]
- Reddy, J.N. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 1984, 51. [Google Scholar] [CrossRef]
- Touratier, M. An efficient standard plate theory. Int. J. Eng. Sci. 1991, 29. [Google Scholar] [CrossRef]
- Shimpi, R.P. Refined plate theory and its variants. AIAA J. 2002, 40. [Google Scholar] [CrossRef]
- Thai, H.T.; Choi, D.H. A refined shear deformation theory for free vibration of functionally graded plates. Compos. Part B Eng. 2012, 43. [Google Scholar] [CrossRef]
- Sayyad, A.S.; Ghugal, Y.M. On the free vibration of angle-ply laminated composite and soft core sandwich plates. J. Sandwich Struct. Mater. 2017, 19. [Google Scholar] [CrossRef]
- Cowper, G.R. The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 1966, 33. [Google Scholar] [CrossRef]
- Gruttmann, F.; Wagner, W. Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections. Comput. Mech. 2001, 27. [Google Scholar] [CrossRef]
- Pai, P.F. A new look at shear correction factors and warping functions of anisotropic laminates. Int. J. Solids Struct. 1995, 32. [Google Scholar] [CrossRef]
- Nguyen, T.-K.; Vo, T.P.; Thai, H.-T. Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2014; 228. [Google Scholar]
- Vinson, J.R. The Behavior of Sandwich Structures of Isotropic and Composite Materials; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Zenkert, D. The Handbook of Sandwich Construction; EMAS: West Midlands, UK, 1997. [Google Scholar]
- Nordstrand, T.; Carlsson, L.A. Evaluation of transverse shear stiffness of structural core sandwich plates. Compos. Struct. 1997, 37. [Google Scholar] [CrossRef]
- Östlund, S.; Niskanen, K. (Eds.) Mechanics of Paper Products, 2nd ed.; Walter de Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Hägglund, R.; Isaksson, P. A mechanical model for paper and other planar fiber networks. Mech. Mater. 2006, 38. [Google Scholar]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; Wiley: Chichester, UK, 2008. [Google Scholar]
- Helton, J.C.; Davis, F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 2003, 81. [Google Scholar] [CrossRef]
- Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008, 93. [Google Scholar] [CrossRef]
- Mrówczyński, D.; Gajewski, T.; Garbowski, T. Sensitivity Analysis of Creasing Parameters in Corrugated Board. Materials 2023, 16. [Google Scholar]
- Suarez, B.; Muneta, L.M.; Romero, G.; Sanz-Bobi, J.D. Efficient Design of Thin Wall Seating Made of a Single Piece of Heavy-Duty Corrugated Cardboard. Materials 2021, 14, 6645. [Google Scholar] [CrossRef]
- Rogalka, M.; Grabski, J.K.; Garbowski, T. Identification of Geometric Features of the Corrugated Board Using Images and Genetic Algorithm. Sensors 2023, 23. [Google Scholar] [CrossRef]
- Rogalka, M.; Grabski, J.K.; Garbowski, T. Deciphering Double-Walled Corrugated Board Geometry Using Image Analysis and Genetic Algorithms. Sensors 2024, 24. [Google Scholar] [CrossRef]
- Rogalka, M.; Grabski, J.K.; Garbowski, T. In-Situ Classification of Highly Deformed Corrugated Board Using Convolution Neural Networks. Sensors 2024, 24. [Google Scholar] [CrossRef] [PubMed]
- Aduke, R.N.; Venter, M.P.; Coetzee, C.J. Numerical Modelling of Corrugated Paperboard Boxes. Math. Comput. Appl. 2024, 29, 70. [Google Scholar] [CrossRef]
- Staszak, N.; Garbowski, T.; Szymczak-Graczyk, A. Solid Truss to Shell Numerical Homogenization of Prefabricated Composite Slabs. Materials 2021, 14, 4120. [Google Scholar] [CrossRef]
- Vu-Bac, N.; Rafiee, R.; Zhuang, X.; Lahmer, T.; Rabczuk, T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Compos. Part B Eng. 2015, 68. [Google Scholar] [CrossRef]
- Garbowski, T.; Graczyk, J. Shear correction factor in corrugated board layered plates. Polish Paper Rev. 2025, 81, 686–690. [Google Scholar] [CrossRef]
- Graczyk, J.; Gajewski, T.; Garbowski, T. Shear Correction Factor for Porous Eco-Materials: Mechanical Characterization of a Heterogeneous Medium. Preprints 2026, 2026011251. [Google Scholar] [CrossRef]
- Graczyk, J.; Gajewski, T.; Garbowski, T. Numerical Determination of the Shear Correction Factor for Thin-Walled Steel Sections Using Shell-Based Finite Element Modeling. SSRN 2026. [Google Scholar] [CrossRef]
- Szymczak-Graczyk, A.; Guri, Z.; Canaj, I.; Garbowski, T. Generalized Shear Correction Factor for Non-Homogeneous Beam Cross-Sections with an Embedded Steel Core. Preprints 2026, xxx. [Google Scholar] [CrossRef]
- Loja, M.A.R.; Barbosa, J.I. Exponentially Graded Auxetic Structures: An Assessment of the Shear Correction Factor and Static Deflection. Appl. Sci. 2024, 14, 9356. [Google Scholar] [CrossRef]
- Mota, A.F.; Loja, M.A.R.; Barbosa, J.I.; Rodrigues, J.A. Porous Functionally Graded Plates: An Assessment of the Influence of Shear Correction Factor on Static Behavior. Math. Comput. Appl. 2020, 25, 25. [Google Scholar] [CrossRef]
- Staszak, N.; Szymczak-Graczyk, A.; Garbowski, T. Elastic Analysis of Three-Layer Concrete Slab Based on Numerical Homogenization with an Analytical Shear Correction Factor. Appl. Sci. 2022, 12, 9918. [Google Scholar] [CrossRef]








| Parameter | 3-ply | 5-ply | ||
|---|---|---|---|---|
| Min | Max | Min | Max | |
| [mm] | 4.000258 | 8.499252 | 4.002924 | 9.494775 |
| [mm] | 1.001079 | 4.497692 | 1.001209 | 4.998968 |
| [mm] | 0.100412 | 0.349547 | 0.100012 | 0.349896 |
| [mm] | - | - | 4.001369 | 9.498377 |
| [mm] | - | - | 1.000964 | 4.997345 |
| [mm] | - | - | 0.100056 | 0.349870 |
| [mm] | 0.100053 | 0.399727 | 0.100234 | 0.399820 |
| [mm] | - | - | 0.100245 | 0.399957 |
| [mm] | 0.100311 | 0.399791 | 0.100196 | 0.399823 |
| [MPa] | 0.150515 | 1.493291 | 0.150255 | 1.496948 |
| [MPa] | 0.250567 | 2.498199 | 0.250230 | 2.499512 |
| Dataset | Median [%] | 90th percentile [%] | Max [%] |
|---|---|---|---|
| 3-ply | 0.165672 | 1.853076 | 7.497941 |
| 5-ply | 0.023637 | 1.082396 | 7.299894 |
| Dataset | mean | std | median | IQR | q5 | q50 | q95 |
|---|---|---|---|---|---|---|---|
| 3-ply | 0.718413 | 0.128947 | 0.760203 | 0.176524 | 0.466396 | 0.760203 | 0.849355 |
| 5-ply | 0.741803 | 0.112452 | 0.787480 | 0.123227 | 0.482342 | 0.787480 | 0.838569 |
| Parameter | Log-elasticity | PRCC |
|---|---|---|
| 0.015330 | 0.074295 | |
| 0.115772 | 0.530662 | |
| -0.029048 | -0.171102 | |
| -0.047826 | -0.142491 | |
| -0.064391 | -0.195491 | |
| 0.023640 | 0.093608 | |
| -0.010947 | -0.056239 |
| Parameter | Log-elasticity | PRCC |
| 0.008090 | 0.019066 | |
| 0.049138 | 0.157244 | |
| -0.005123 | 0.063589 | |
| 0.012620 | 0.003505 | |
| 0.044675 | 0.144208 | |
| -0.009513 | 0.061353 | |
| -0.018829 | -0.080112 | |
| -0.031460 | -0.125244 | |
| -0.021187 | -0.091543 | |
| 0.019820 | 0.072902 | |
| -0.006341 | -0.031775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
