Submitted:
02 February 2026
Posted:
03 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Importance of Temperature as an Ecological and Metabolic Factor
2.1. Temperature and Ecological Niche
2.2. Temperature in Water Treatment
3. Thermal Pollution
4. Water Temperature and Climate Change
5. Wastewater Temperature Recovery
6. Observed and Potential Thermal Impact of WWTP Effluents on Receiving Rivers
6.1. Effects on Primary Producers
6.2. Effects on Macroinvertebrates
6.3. Effects on Fish
6.4. Effects of Warming on River Communities
7. Conclusions
- Water temperature is a key ecological and metabolic factor in rivers and other continental systems, influencing from species distribution to growth, reproduction, and survival rates.
- Thermal pollution caused by human activities (dams, discharges, urban stormwater, industrial cooling) alters the natural thermal regime of rivers, modifying the structure and functioning of communities (primary producers, macroinvertebrates, and fish) and favouring thermophilic species.
- Wastewater treatment plants (WWTPs) generate and discharge excess heat: their effluents are often several degrees above the temperature of the receiving river, which increases the metabolism of communities, favours eutrophication, and can intensify the effects of nutrients and toxic pollutants.
- Heat excess from wastewater is a major renewable energy resource that can be recovered using heat pumps, both in buildings and in the treatment plants themselves, as well as in district heating networks, reducing demand for fossil fuels and CO₂ emissions.
- Heat recovery in WWTPs, especially from treated effluent connected to district networks, offers very high technical potential and can contribute significantly to more sustainable urban energy systems.
- Heat recovery in WWTPs can minimize the thermal impact of effluents on receiving streams, reducing the negative effects of discharges on the natural river environment.
- Perform an energy analysis in treatment plants,
- Perform a spatiotemporal analysis of supply and demand, and
- Carry out an integrated analysis for the optimal use of thermal energy.
- Thermal energy storage,
- Improving the efficiency of recovery technologies, and
- Strategic planning considering spatial proximity.
Conflicts of Interest
References
- European Parliament Official Journal of the European Union 2018, 328(82), 1–128.
- Spriet, J.; McNabola, A.; Neugebauer, G.; Stoeglehner, G.; Ertl, T.; Kretschmer, F. Spatial and Temporal Considerations in the Performance of Wastewater Heat Recovery Systems. J. Clean. Prod. 2020, 247, 119583. [Google Scholar] [CrossRef]
- Chen, W.-A.; Lim, J.; Miyata, S.; Akashi, Y. Methodology of Evaluating the Sewage Heat Utilization Potential by Modelling the Urban Sewage State Prediction Model. Sustain. Cities Soc. 2022, 80, 103751. [Google Scholar] [CrossRef]
- Frijns, J.; Hofman, J.; Nederlof, M. The Potential of (Waste)Water as Energy Carrier. Energy Convers. Manag. 2013, 65, 357–363. [Google Scholar] [CrossRef]
- Webb, B.W.; Hannah, D.M.; Moore, R.D.; Brown, L.E.; Nobilis, F. Recent Advances in Stream and River Temperature Research. Hydrol. Process. 2008, 22, 902–918. [Google Scholar] [CrossRef]
- Caissie, D. The Thermal Regime of Rivers: A Review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Nukazawa, K.; Shiraiwa, J.; Kazama, S. Evaluations of Seasonal Habitat Variations of Freshwater Fishes, Fireflies, and Frogs Using a Habitat Suitability Index Model That Includes River Water Temperature. Ecol. Model. 2011, 222, 3718–3726. [Google Scholar] [CrossRef]
- Wootton, R. Ecology of Teleost Fishes; Chapman & Hall: London, 1990; ISBN 978-94-009-0829-1. [Google Scholar]
- Jobling, M. Environmental Biology of Fishes; Chapman & Hall: London, 1995. [Google Scholar]
- Johnson, M.F.; Albertson, L.K.; Algar, A.C.; Dugdale, S.J.; Edwards, P.; England, J.; Gibbins, C.; Kazama, S.; Komori, D.; MacColl, A.D.C.; et al. Rising Water Temperature in Rivers: Ecological Impacts and Future Resilience. WIREs Water 2024, 11, e1724. [Google Scholar] [CrossRef]
- Verones, F.; Hanafiah, M.M.; Pfister, S.; Huijbregts, M.A.J.; Pelletier, G.J.; Koehler, A. Characterization Factors for Thermal Pollution in Freshwater Aquatic Environments. Environ. Sci. Technol. 2010, 44, 9364–9369. [Google Scholar] [CrossRef] [PubMed]
- Lewis, W. Physical and Chemical Features of Tropical Flowing Waters. In Tropical Stream Ecology; Dudgeon, D., Ed.; Academic Press: London, 2008; pp. 1–21. [Google Scholar]
- Matthews, W.J.; Zimmerman, E.G. Potential Effects of Global Warming on Native Fishes of the Southern Great Plains and the Southwest. Fisheries 1990, 15, 26–32. [Google Scholar] [CrossRef]
- Meybeck, M.; Friedrich, G.; Thomas, R.H.; Chapman, D. Rivers. Water quality assessments: A guide to the use of biota, sediments, and water in environmental monitoring; Chapman, D.V., Ed.; UNESCO/WHO/UNEP, Chapman & Hall: London, 1996; pp. 243–318. [Google Scholar]
- Montejano, G.; Becerra, I. Caracterización Del Hábitat Acuático Asociado al Pez Cyprinodon (Nsp.) Julimes; World Wide Fund: México, 2009. [Google Scholar]
- Hillyard, S.D.; Podrabsky, J.E.; van Breukelen, F. Desert Environments. In Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments; Riesch, R., Tobler, M., Plath, M., Eds.; Springer International Publishing: Cham, 2015; pp. 59–83. ISBN 978-3-319-13362-1. [Google Scholar]
- Schotte, M. Thermosphaeroma Mendozai, a New Species from Hot Springs in Northern Chihuahua, Mexico (Crustacea: Isopoda: Sphaeromatidae). Proc. Biol. Soc. Wash. 2000, 113, 989–995. [Google Scholar]
- The Biology of the Prokaryotes; Lengeler, J., Drews, G., Schleger, Eds.; Gerg Thieme Verlag: Stuttgart, 1999. [Google Scholar]
- Madigan, M.T.; Martinko, J.M.; Parker, J. Brock Biology of Microorganisms, 8th ed.; Prentice Hall: Upper Saddle River (NJ), 1997. [Google Scholar]
- Boyd, C.E. Solar Radiation and Water Temperature. In Water Quality: An Introduction; Boyd, C.E., Ed.; Springer International Publishing: Cham, 2020; pp. 21–39. ISBN 978-3-030-23335-8. [Google Scholar]
- Grady, C.L., Jr.; Daigger, G.T.; Love, N.G.; Filipe, C.D. Biological Wastewater Treatment, 3rd ed.; IWA-CRC Press: Boca Ratón, 2011; ISBN 978-0-429-12471-6. [Google Scholar]
- Suárez, S.; Omil, F.; Lema, J.M. Presencia de Compuestos Farmacéuticos En Aguas Residuales y Posibilidades de Eliminación En Estaciones Depuradoras. In Aguas continentales: Gestión de recursos hídricos, tratamiento y calidad del agua; Barceló, D., Ed.; Consejo Superior de Investigaciones Científicas: Madrid, 2008; pp. 225–240. [Google Scholar]
- Chun, Y.; Kim, D.; Hattori, S.; Toyoda, S.; Yoshida, N.; Huh, J.; Lim, J.-H.; Park, J.-H. Temperature Control on Wastewater and Downstream Nitrous Oxide Emissions in an Urbanized River System. Water Res. 2020, 187, 116417. [Google Scholar] [CrossRef] [PubMed]
- Loosdrecht, M.C.M. van Innovative Nitrogen Removal. In Biological Wastewater Treatment; IWA Publishing: London, 2008; pp. 139–153. ISBN 978-1-84339-188-3. [Google Scholar]
- Langford, T.E.L. Ecological Effects of Thermal Discharges; Elsevier Applied Science Publishers Ltd.: London and New York, 1990; ISBN 978-1-85166-451-1. [Google Scholar]
- Kinouchi, T.; Yagi, H.; Miyamoto, M. Increase in Stream Temperature Related to Anthropogenic Heat Input from Urban Wastewater. J. Hydrol. 2007, 335, 78–88. [Google Scholar] [CrossRef]
- Nelson, J.A.; Rieger, K.J.; Gruber, D.; Cutler, M.; Buckner, B.; Oufiero, C.E. Thermal Tolerance of Cyprinids along an Urban-Rural Gradient: Plasticity, Repeatability and Effects of Swimming and Temperature Shock. J. Therm. Biol. 2021, 100, 103047. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.M. Thermal Ecology of Brown Trout and the Climate Change Challenge. In Tilapia and Trout: Harvesting, Prevalence and Benefits; Fish, Fishing and Fisheries; Richardson, B., Ed.; Nova Science Publishers: New York, 2017; pp. 79–119. ISBN 978-1-5361-0588-9. [Google Scholar]
- Sunar, M.C.; Kır, M. Thermal Tolerance of Acartia Tonsa: In Relation to Acclimation Temperature and Life Stage. J. Therm. Biol. 2021, 102, 103116. [Google Scholar] [CrossRef]
- Walters, A.W.; Mandeville, C.P.; Rahel, F.J. The Interaction of Exposure and Warming Tolerance Determines Fish Species Vulnerability to Warming Stream Temperatures. Biol. Lett. 2018, 14, 20180342. [Google Scholar] [CrossRef]
- Coutant, C.C. Perspectives on Temperature in the Pacific Northwest’s Fresh Waters p. ORNL/TM-1999/44, 9042; Environmental Sciences Division Publication; Oak Ridge National Laboratory: Oak Ridge, 1999. [Google Scholar]
- Santiago, J.M.; Alonso, C.; García de Jalón, D.; Solana-Gutiérrez, J.; Muñoz-Mas, R. Effects of Climate Change on the Life Stages of Stream-Dwelling Brown Trout (Salmo Trutta Linnaeus, 1758) at the Rear Edge of Their Native Distribution Range. Ecohydrology 2020, 13, e2241. [Google Scholar] [CrossRef]
- Raptis, C.E.; van Vliet, M.T.H.; Pfister, S. Global Thermal Pollution of Rivers from Thermoelectric Power Plants. Environ. Res. Lett. 2016, 11, 104011. [Google Scholar] [CrossRef]
- García de Jalón, D. Impactos de Las Modificaciones Del Régimen Térmico En Las Comunidades Fluviales. In Efectos Térmicos en Presas y Embalses; Dolz, J., Puertas, J., Aguado, A., Agulló, L., Eds.; Colegio de Ingenieros de Caminos, Canales y Puertos: Madrid, 1997; pp. 95–108. [Google Scholar]
- Casado, C.; García de Jalón, D.; del Olmo, C.M.; Barceló, E.; Menes, F. The Effect of an Irrigation and Hydroelectric Reservoir on Its Downstream Communities. Regul. Rivers Res. Manag. 1989, 4, 275–284. [Google Scholar] [CrossRef]
- Maheu, A.; St-Hilaire, A.; Caissie, D.; El-Jabi, N.; Bourque, G.; Boisclair, D. A Regional Analysis of the Impact of Dams on Water Temperature in Medium-Size Rivers in Eastern Canada. Can. J. Fish. Aquat. Sci. 2016, 73, 1885–1897. [Google Scholar] [CrossRef]
- Prats, J.; Armengol, J.; Marcé, R.; Sánchez-Juny, M.; Dolz, J. Dams and Reservoirs in the Lower Ebro River and Its Effects on the River Thermal Cycle. In The Ebro River Basin; The Handbook of Environmental Chemistry; Barceló, D., Petrovic, M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp. 77–95. ISBN 978-3-642-18031-6. [Google Scholar]
- Santiago, J.M.; García de Jalón, D.; Alonso, C.; Solana, J. Comportamiento Térmico de Dos Tramos Fluviales de Cabecera Del Sistema Central: Impacto Del Embalse de Torrecaballeros (Segovia); Marcombo: Valencia, 2013; Vol. 1, pp. 153–160. [Google Scholar]
- Zaidel, P.A.; Roy, A.H.; Houle, K.M.; Lambert, B.; Letcher, B.H.; Nislow, K.H.; Smith, C. Impacts of Small Dams on Stream Temperature. Ecol. Indic. 2021, 120, 106878. [Google Scholar] [CrossRef]
- Hester, E.T.; Bauman, K.S. Stream and Retention Pond Thermal Response to Heated Summer Runoff From Urban Impervious Surfaces. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 328–342. [Google Scholar] [CrossRef]
- Jones, M.P.; Hunt, W.F.; Winston, R.J. Effect of Urban Catchment Composition on Runoff Temperature. J. Environ. Eng. 2012, 138, 1231–1236. [Google Scholar] [CrossRef]
- Benedini, M.; Tsakiris, G. Thermal Pollution. In Water Quality Modelling for Rivers and Streams; Water Science and Technology Library; Springer Netherlands: Dordrecht, 2013; Vol. 70, pp. 199–212. ISBN 978-94-007-5508-6. [Google Scholar]
- Kalinowska, M.B. Effect of Water–Air Heat Transfer on the Spread of Thermal Pollution in Rivers. Acta Geophys. 2019, 67, 597–619. [Google Scholar] [CrossRef]
- de Vries, P.; Tamis, J.E.; Murk, A.J.; Smit, M.G.D. Development and Application of a Species Sensitivity Distribution for Temperature-induced Mortality in the Aquatic Environment. Environ. Toxicol. Chem. 2008, 27, 2591–2598. [Google Scholar] [CrossRef]
- Logue, J.; Tiku, P.; Cossins, A.R. Heat Injury and Resistance Adaptation in Fish. J. Therm. Biol. 1995, 20, 191–197. [Google Scholar] [CrossRef]
- Alfonso, S.; Gesto, M.; Sadoul, B. Temperature Increase and Its Effects on Fish Stress Physiology in the Context of Global Warming. J. Fish Biol. 2021, 98, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, M.T.H.; Ludwig, F.; Zwolsman, J.J.G.; Weedon, G.P.; Kabat, P. Global River Temperatures and Sensitivity to Atmospheric Warming and Changes in River Flow. Water Resour. Res. 2011, 47, W02544. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global River Discharge and Water Temperature under Climate Change. Glob. Environ. Change 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Rahel, F.J.; Keleher, C.J.; Anderson, J.L. Potential Habitat Loss and Population Fragmentation for Cold Water Fish in the North Platte River Drainage of the Rocky Mountains: Response to Climate Warming. Limnol. Oceanogr. 1996, 41, 1116–1123. [Google Scholar] [CrossRef]
- Santiago, J.M.; Muñoz-Mas, R.; Solana-Gutiérrez, J.; García de Jalón, D.; Alonso, C.; Martínez-Capel, F.; Pórtoles, J.; Monjo, R.; Ribalaygua, J. Waning Habitats Due to Climate Change: The Effects of Changes in Streamflow and Temperature at the Rear Edge of the Distribution of a Cold-Water Fish. Hydrol. Earth Syst. Sci. 2017, 21, 4073–4101. [Google Scholar] [CrossRef]
- Santiago, J.M.; García de Jalón, D.; Alonso, C.; Solana, J.; Ribalaygua, J.; Pórtoles, J.; Monjo, R. Brown Trout Thermal Niche and Climate Change: Expected Changes in the Distribution of Cold-Water Fish in Central Spain. Ecohydrology 2016, 9, 514–528. [Google Scholar] [CrossRef]
- Webb, B.W.; Walsh, A.J. Changing UK River Temperatures and Their Impact on Fish Populations. In Proceedings of the Proceeding of the British Hydrological Society International Conference; Webb, B.W., Acreman, M., Maksimovic, C., Smithers, H., Kirby, C., Eds.; British Hydrological Society: London, 2004; Vol. 2, pp. 177–191. [Google Scholar]
- Brunet, M.; Jones, P.D.; Sigró, J.; Saladié, O.; Aguilar, E.; Moberg, A.; Della-Marta, P.M.; Lister, D.; Walther, A.; López, D. Temporal and Spatial Temperature Variability and Change over Spain during 1850–2005. J. Geophys. Res. 2007, 112, D12117. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC) Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, 2023.
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, H.J.M.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grubler, A.; Jung, T.Y.; Kram, T.; et al. Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, 2000. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC) Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, 2014; ISBN 978-1-107-05799-9.
- Benz, S.A.; Irvine, D.J.; Rau, G.C.; Bayer, P.; Menberg, K.; Blum, P.; Jamieson, R.C.; Griebler, C.; Kurylyk, B.L. Global Groundwater Warming Due to Climate Change. Nat. Geosci. 2024, 17, 545–551. [Google Scholar] [CrossRef]
- Chessman, B.C. Climatic Changes and 13-Year Trends in Stream Macroinvertebrate Assemblages in New South Wales, Australia. Glob. Change Biol. 2009, 15, 2791–2802. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Jaworski, N.A.; Pace, M.L.; Sides, A.M.; Seekell, D.; Belt, K.T.; Secor, D.H.; Wingate, R.L. Rising Stream and River Temperatures in the United States. Front. Ecol. Environ. 2010, 8, 461–466. [Google Scholar] [CrossRef]
- Orr, H.G.; Simpson, G.L.; des Clers, S.; Watts, G.; Hughes, M.; Hannaford, J.; Dunbar, M.J.; Laizé, C.L.R.; Wilby, R.L.; Battarbee, R.W.; et al. Detecting Changing River Temperatures in England and Wales. Hydrol. Process. 2015, 29, 752–766. [Google Scholar] [CrossRef]
- Chen, G.; Fang, X.; Fan, H. Estimating Hourly Water Temperatures in Rivers Using Modified Sine and Sinusoidal Wave Functions. J. Hydrol. Eng. 2016, 05016023. [Google Scholar] [CrossRef]
- Pekarova, P.; Halmova, D.; Miklanek, P.; Onderka, M.; Pekar, J.; Skoda, P. Is the Water Temperature of the Danube River at Bratislava, Slovakia, Rising? J. Hydrometeorol. 2008, 9, 1115–1122. [Google Scholar] [CrossRef]
- Moatar, F.; Gailhard, J. Water Temperature Behaviour in the River Loire since 1976 and 1981. Comptes Rendus Geosci. 2006, 338, 319–328. [Google Scholar] [CrossRef]
- Carlson, A.K.; Taylor, W.W.; Schlee, K.M.; Zorn, T.G.; Infante, D.M. Projected Impacts of Climate Change on Stream Salmonids with Implications for Resilience-Based Management. Ecol. Freshw. Fish 2017, 26, 190–204. [Google Scholar] [CrossRef]
- Webb, B.W. Trends in Stream and River Temperature. Hydrol. Process. 1996, 10, 205–226. [Google Scholar] [CrossRef]
- Wade, A.J. Monitoring and Modelling the Impacts of Global Change on European Freshwater Ecosystems. Sci. Total Environ. 2006, 365, 3–14. [Google Scholar] [CrossRef]
- Webb, B.W.; Nobilis, F. Long-Term Changes in River Temperature and the Influence of Climatic and Hydrological Factors. Hydrol. Sci. J. 2007, 52, 74–85. [Google Scholar] [CrossRef]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate Change and Freshwater Ecosystems: Impacts across Multiple Levels of Organization. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [PubMed]
- Arismendi, I.; Safeeq, M.; Johnson, S.L.; Dunham, J.B.; Haggerty, R. Increasing Synchrony of High Temperature and Low Flow in Western North American Streams: Double Trouble for Coldwater Biota? Hydrobiologia 2012, 712, 61–70. [Google Scholar] [CrossRef]
- Hughes, L. Biological Consequences of Global Warming: Is the Signal Already. Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Barbarossa, V.; Bosmans, J.; Wanders, N.; King, H.; Bierkens, M.F.P.; Huijbregts, M.A.J.; Schipper, A.M. Threats of Global Warming to the World’s Freshwater Fishes. Nat. Commun. 2021, 12, 1701. [Google Scholar] [CrossRef]
- Meggers, F.; Leibundgut, H. The Potential of Wastewater Heat and Exergy: Decentralized High-Temperature Recovery with a Heat Pump. Energy Build. 2011, 43, 879–886. [Google Scholar] [CrossRef]
- Saagi, R.; Arnell, M.; Wärff, C.; Ahlström, M.; Jeppsson, U. City-Wide Model-Based Analysis of Heat Recovery from Wastewater Using an Uncertainty-Based Approach. Sci. Total Environ. 2022, 820, 153273. [Google Scholar] [CrossRef]
- Hao, X.; Li, J.; van Loosdrecht, M.C.M.; Jiang, H.; Liu, R. Energy Recovery from Wastewater: Heat over Organics. Water Res. 2019, 161, 74–77. [Google Scholar] [CrossRef]
- Schmid, F. Sewage Water: Interesting Heat Source for Heat Pumps and Chillers; Swiss Energy Agency for Infrastructure Plants: Zurich, 2008. [Google Scholar]
- Wilson, M.P.; Worrall, F. The Heat Recovery Potential of ‘Wastewater’: A National Analysis of Sewage Effluent Discharge Temperatures. Environ. Sci. Water Res. Technol. 2021, 7, 1760–1777. [Google Scholar] [CrossRef]
- Neugebauer, G.; Kretschmer, F.; Kollmann, R.; Narodoslawsky, M.; Ertl, T.; Stoeglehner, G. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants. Sustainability 2015, 7, 12988–13010. [Google Scholar] [CrossRef]
- Zogg, M. History of Heat Pumps. Swiss Contributions and International Milestones; Process and Energy Engineering; Department of Environment, Transport, Energy and Communications DETEC: Oberburg, 2008; p. 114. [Google Scholar]
- Funamizu, N.; Iida, M.; Sakakura, Y.; Takakuwa, T. Reuse of Heat Energy in Wastewater: Implementation Examples in Japan. Water Sci. Technol. 2001, 43, 277–285. [Google Scholar] [CrossRef]
- Mikkonen, L.; Rämö, J.; Keiski, R.L.; Pongrácz, E. Heat Recovery from Wastewater: Assessing the Potential in Northern Areas. In Proceedings of the Water Research Conference, Thule Institute, University of Oulu, Finland, 2013; pp. 161–164. [Google Scholar]
- Lingsten, A.; Lundkvist, M. Nulägesbeskrivning Av VA-Verkens Energianvändning; The Swedish Water and Wastewater Association: Stockholm, 2008; p. 36. [Google Scholar]
- Đurđević, D.; Balić, D.; Franković, B. Wastewater Heat Utilization through Heat Pumps: The Case Study of City of Rijeka. J. Clean. Prod. 2019, 231, 207–213. [Google Scholar] [CrossRef]
- Elías-Maxil, J.A.; van der Hoek, J.P.; Hofman, J.; Rietveld, L. Energy in the Urban Water Cycle: Actions to Reduce the Total Expenditure of Fossil Fuels with Emphasis on Heat Reclamation from Urban Water. Renew. Sustain. Energy Rev. 2014, 30, 808–820. [Google Scholar] [CrossRef]
- Tuncay, E. The Effect of Wastewater Treatment Plant Effluent on Water Temperature, Macroinvertebrate Community, and Functional Feeding Groups Structure in the Lower Rouge River, Michigan. PhD Thesis, University of Michigan, Dearborn, 2016. [Google Scholar]
- Nagpal, H.; Spriet, J.; Murali, M.; McNabola, A. Heat Recovery from Wastewater—A Review of Available Resource. Water 2021, 13, 1274. [Google Scholar] [CrossRef]
- Arnell, M.; Lundin, E.; Jeppson, U. Sustainability Analysis for Wastewater Heat Recovery - Literature Review; Lund University: Lund, 2017. [Google Scholar]
- EnergieSchweiz Heizen Und Kühlen Mit Abwasser - Ratgeber Für Bauherrschaften Und Gemeinden; EnergieSchweiz: Berna, 2005.
- Sørensen, BB. Renewable Energy. Physics, Engineering, Environmental Impacts, Economics & Planning, 5th ed.; Academic Press: Burlington, 2017. [Google Scholar]
- Lichtenwoehrer, P.; Erker, S.; Zach, F.; Stoeglehner, G. Future Compatibility of District Heating in Urban Areas — a Case Study Analysis in the Context of Integrated Spatial and Energy Planning. Energy Sustain. Soc. 2019, 9, 12. [Google Scholar] [CrossRef]
- Yang, Z.; Worrall, F.; Knapp, J.L.A. The Impact of Sewage Treatment Plant Discharges on the Water Quality of Receiving Rivers. Ecohydrology 2025, 18, e70087. [Google Scholar] [CrossRef]
- Zhang, M.; Chadwick, M.A. Influences of Elevated Nutrients and Water Temperature from Wastewater Effluent on River Ecosystem Metabolism. Environ. Process. 2022, 9, 43. [Google Scholar] [CrossRef]
- Erickson, R.J. An Evaluation of Mathematical Models for the Effects of pH and Temperature on Ammonia Toxicity to Aquatic Organisms. Water Res. 1985, 19, 1047–1058. [Google Scholar] [CrossRef]
- Berger, E.; Haase, P.; Kuemmerlen, M.; Leps, M.; Schäfer, R.B.; Sundermann, A. Water Quality Variables and Pollution Sources Shaping Stream Macroinvertebrate Communities. Sci. Total Environ. 2017, 587–588, 1–10. [Google Scholar] [CrossRef]
- Verheyen, J.; Delnat, V.; Theys, C. Daily Temperature Fluctuations Can Magnify the Toxicity of Pesticides. Curr. Opin. Insect Sci. 2022, 51, 100919. [Google Scholar] [CrossRef] [PubMed]
- Alabaster, J.S.; Lloyd, R. Water Quality Criteria for Freshwater Fish; Butterworths: London, 1980. [Google Scholar]
- Rajwa-Kuligiewicz, A.; Bialik, R.J.; Rowiński, P.M. Dissolved Oxygen and Water Temperature Dynamics in Lowland Rivers over Various Timescales. J. Hydrol. Hydromech. 2015, 63. [Google Scholar] [CrossRef]
- Krenkel, P.A.; Parker, F.L. Biological Aspects of Thermal Pollution; Vanderbilt University: Portland, Oregon, 1969. [Google Scholar]
- Worthington, T.A.; Shaw, P.J.; Daffern, J.R.; Langford, T.E.L. The Effects of a Thermal Discharge on the Macroinvertebrate Community of a Large British River: Implications for Climate Change. Hydrobiologia 2015, 753, 81–95. [Google Scholar] [CrossRef]
- Currie, R.J.; Bennett, W.A.; Beitinger, T.L. Critical Thermal Minima and Maxima of Three Freshwater Game-Fish Species Acclimated to Constant Temperatures. Environ. Biol. Fishes 1998, 51, 187–200. [Google Scholar] [CrossRef]
- Lukšienė, D.; Sandström, O.; Lounasheimo, L.; Andersson, J. The Effects of Thermal Effluent Exposure on the Gametogenesis of Female Fish. J. Fish Biol. 2000, 56, 37–50. [Google Scholar] [CrossRef]
- Rahel, F.J.; Olden, J.D. Assessing the Effects of Climate Change on Aquatic Invasive Species. Conserv. Biol. 2008, 22, 521–533. [Google Scholar] [CrossRef]
- Coulter, D.P.; Sepúlveda, M.S.; Troy, C.D.; Höök, T.O. Thermal Habitat Quality of Aquatic Organisms near Power Plant Discharges: Potential Exacerbating Effects of Climate Warming. Fish. Manag. Ecol. 2014, 21, 196–210. [Google Scholar] [CrossRef]
- Penk, M.R.; Williams, M.A. Thermal Effluents from Power Plants Boost Performance of the Invasive Clam Corbicula Fluminea in Ireland’s Largest River. Sci. Total Environ. 2019, 693, 133546. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, H.A. River Zonation and Classification. In River Ecology; Whitton, B.A., Ed.; Blackwell Scientific Publications: Oxford, 1975; pp. 312–374. [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]


| Group | Temperature |
| Diatoms | 15-25°C |
| Green algae | 25-35°C |
| Cyanobacteria | 30-40°C |
| Group | Temperature |
| Rainbow trout | 25-28°C |
| Brown trout | 23-30°C |
| Atlantic salmon | 28-30°C |
| Pike | 28-34°C |
| Sea lamprey | 34°C |
| Sunfish | 34°C |
| Black-bass | 32-36°C |
| Gudgeon | 36°C |
| Tench | 29-39°C |
| Goldfish | 31-38°C |
| Carp | 31-40°C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
