Submitted:
30 January 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Fieldwork
3.2. Laboratory Work
4. Results
4.1. Facies Analysis
4.1.1. Siliciclastic Facies
- F1
- : Matrix-Supported Conglomerates (Gmm)
- F2
- : Clast-supported conglomerate (Gcm)
- F3
- : Cross-stratified conglomerate (Gt)
- F4
- : Massive sandstone (Sm).
- F5
- : Horizontally bedded sandstone (Sh)
- F6
- : Massive siltstone-mudstone (Fm2)
4.1.2. Carbonate facies
- F7
- : Massive limestone (Lm)
- F8
- : Nodular limestone (Ln)
4.1.3. Mixed facies
- F10
- : Massive siltstone-mudstone with carbonate nodules (Fm1)
- F11
- : Massive limestone with scattered clasts (Lmc)
- F12
- : Stromatolitic limestone (Ls)

4.1.3. Volcanic facies
4.1.4. Biogenic features of the Stromatolitic limestone (Ls) facies in Amane n’Tourhart and the Laminar limestone (Ll) facies in Tifernine
4.2. Facies Associations
- b) Lake facies association
- Tifernine area
5. Discussion
5.1. Paleo-Environmental Reconstruction of the Amane n'Tourhart and Tifernine Sedimentary Successions
- c) Phase 1: Alluvial fan system
- d) Phase 2: Fluviolacustrine system
- e) Phase 3: Shallow-water, lacustrine system
- f) Phase 4: Fluviolacustrine system
- g) Phase 5: Alluvial fan system
5.1. Sedimentary Deposits in the Amane n'Tourhart and Tifernine Areas
5.2. Climatic Control on Fluviolacustrine Deposition
5.3. Volcanic Control on Fluviolacustrine Deposition
6. Conclusion
Acknowledgements
References
- Hoffman, P.F.; Schrag, D.P. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova 2002, 14, 129–155. [Google Scholar] [CrossRef]
- Knoll, A.H.; Walter, M.R.; Narbonne, G.M.; Christie-Blick, N. The Ediacaran Period: A New Addition to the Geologic Time Scale. Lethaia 2006, 39, 13–30. [Google Scholar] [CrossRef]
- Shields-Zhou, G. The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences. GSA TODAY 2011. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Abbot, D.S.; Ashkenazy, Y.; Benn, D.I.; Brocks, J.J.; Cohen, P.A.; Cox, G.M.; Creveling, J.R.; Donnadieu, Y.; Erwin, D.H.; et Fairchild, I. J.; Ferreira, D.; Goodman, J. C.; Halverson, G. P.; Jansen, M. F.; Le Hir, G.; Love, G. D.; Macdonald, F. A.; Maloof, A. C.; Partin, C. A.; Ramstein, G.; Rose, B. E. J.; Rose, C. V.; Sadler, P. M.; Tziperman, E.; Voigt, A.; Warren, S. Gal. Snowball Earth Climate Dynamics and Cryogenian Geology-Geobiology. Sci. Adv. REQUESTEDJOURNAL:JOURNAL:SCIADV;WGROUP:STRING:PUBLICATION. 2017, 3. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.H.; Narbonne, G.M. The Ediacaran Period. In Geologic Time Scale; 2020; pp. 521–561. [Google Scholar] [CrossRef]
- Narbonne, G.M. The Ediacara Biota: Neoproterozoic Origin of Animals and Their Ecosystems. Annu. Rev. Earth Planet. Sci. 2005, 33, 421–442. [Google Scholar] [CrossRef]
- Xiao, S.; Laflamme, M. On the Eve of Animal Radiation: Phylogeny, Ecology and Evolution of the Ediacara Biota. Trends Ecol. Evol. 2009, 24, 31–40. [Google Scholar] [CrossRef]
- Erwin, D.H.; Laflamme, M.; Tweedt, S.M.; Sperling, E.A.; Pisani, D.; Peterson, K.J. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science (1979). 2011, 334, 1091–1097. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P. A Neoproterozoic Snowball Earth. Science (1979). 1998, 281, 1342–1346. [Google Scholar] [CrossRef]
- Halverson, G.P.; Hoffman, P.F.; Schrag, D.P.; Maloof, A.C.; Rice, A.H.N. Toward a Neoproterozoic Composite Carbon-Isotope Record. Bulletin of the Geological Society of America 2005, 117, 1181–1207. [Google Scholar] [CrossRef]
- Halverson, G.P.; Wade, B.P.; Hurtgen, M.T.; Barovich, K.M. Neoproterozoic Chemostratigraphy. Precambrian Res. 2010, 182, 337–350. [Google Scholar] [CrossRef]
- Xiao, S.; Narbonne, G.M.; Zhou, C.; Laflamme, M.; Grazhdankin, D. V.; Moczydlowska-Vidal, M.; Cui, H. Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects. Episodes Journal of International Geoscience 2016, 39, 540–555. [Google Scholar] [CrossRef]
- El Kabouri, J.; Errami, E.; Becker-Kerber, B.; Ennih, N.; Linnemann, U.; Fellah, C.; Triantafyllou, A. Ediacaran Biota from Ougnat Massif (Eastern Anti-Atlas, Morocco): Paleoenvironmental and Stratigraphic Constraints. Journal of African Earth Sciences 2023, 198, 104806. [Google Scholar] [CrossRef]
- El Kabouri, J; Errami, E.K.; Becker-Kerber, E.; Ennih, B.; Youbi, N. Microbially Induced Sedimentary Structures from the Ediacaran of Anti-Atlas, Morocco. Precambrian Res. 2023, 395, 107135. [Google Scholar] [CrossRef]
- El Kabouri, J.; Triantafyllou, A.; Errami, E.; Belkacim, S.; Calassou, E.; Zouicha, A.; Linnemann, U. Revising the Lithostratigraphic Framework of the Ediacaran Succession of the Anti-Atlas Belt: Correlation across the Cadomian Domain of the West African Craton. Journal of African Earth Sciences 2025, 229, 105696. [Google Scholar] [CrossRef]
- Beraaouz, E.H.; El Kabouri, J. First Evidence of Tubular Fossils from the Anti-Atlas: Insights into the Paleogeography of Late Ediacaran Tubular Fossils and the Ediacaran–Cambrian Boundary in the Anti-Atlas. Precambrian Res. 2025, 431, 107962. [Google Scholar] [CrossRef]
- Choubert, G.; Hindermeyer, J.; Hollard, H. Note Préliminaire Sur Les Collenia de l’Anti-Atlas.; LBI., 1952. [Google Scholar]
- Choubert, G. Histoire Géologique Du Domaine de l’Anti-Atlas.; Maroc, Service Géologique, Ed.; Notes Némoires., 1952; Vol. 100. [Google Scholar]
- Choubert, G. Livret-Guide de l’excursion Anti-Atlas Occidental et Central; Service géologique du Maroc, Ed., 1970; Vol. 229. [Google Scholar]
- Álvaro, J.J.; Ezzouhairi, H.; Ayad, N.A.; Charif, A.; Solá, R.; Ribeiro, M.L. Alkaline Lake Systems with Stromatolitic Shorelines in the Ediacaran Volcanosedimentary Ouarzazate Supergroup, Anti-Atlas, Morocco. Precambrian Res. 2010, 179, 22–36. [Google Scholar] [CrossRef]
- Walsh, G.J.; Benziane, F.; Aleinikoff, J.N.; Harrison, R.W.; Yazidi, A.; Burton, W.C.; Quick, J.E.; Saadane, A. Neoproterozoic Tectonic Evolution of the Jebel Saghro and Bou Azzer—El Graara Inliers, Eastern and Central Anti-Atlas, Morocco. Precambrian Res. 2012, 216–219, 23–62. [Google Scholar] [CrossRef]
- Álvaro, J.J.; González-Acebrón, L. Sublacustrine Hydrothermal Seeps and Silicification of Microbial Bioherms in the Ediacaran Oued Dar’a Caldera, Anti-Atlas, Morocco. In Sedimentology; JOURNAL:JOURNAL:13653091; SUBPAGE:STRING:ACCESS, 2019; Volume 66, pp. 2048–2071. [Google Scholar] [CrossRef]
- Beraaouz, M.; Abioui, M.; Patranabis-Deb, S. Precambrian (Ediacaran) Stromatolites in the Amane-n’Tourhart (Anti-Atlas, Morocco). International Journal of Earth Sciences 2019, 108:4 108, 1273–1274. [Google Scholar] [CrossRef]
- Chraiki, I.; Bouougri, E.H.; Chi Fru, E.; Lazreq, N.; Youbi, N.; Boumehdi, A.; Aubineau, J.; Fontaine, C.; El Albani, A. A 571 Million-Year-Old Alkaline Volcanic Lake Photosynthesizing Microbial Community, the Anti-Atlas, Morocco. In Geobiology; SUBPAGE:STRING:ABSTRACT;WEBSITE:WEBSITE:PERICLES;JOURNAL:JOURNAL:14724669; WGROUP:STRING:PUBLICATION, 2021; Volume 19, pp. 105–124. [Google Scholar] [CrossRef]
- Chraiki, I.; Bouougri, E.H.; El Albani, A. Microbialites Diversity from the Ediacaran of the Anti-Atlas (Morocco): A Snapshot of Microbial Oases Thriving in an Alkaline Volcanic Lake. Annales de Paléontologie 2022, 108, 102584. [Google Scholar] [CrossRef]
- Chraiki, I.; Chi Fru, E.; Somogyi, A.; Bouougri, E.H.; Bankole, O.; Ghnahalla, M.; El Albani, A. Blooming of a Microbial Community in an Ediacaran Extreme Volcanic Lake System. Scientific Reports 2023, 13 13, 9080. [Google Scholar] [CrossRef]
- Carrizo, D.; Beraaouz, M.; Hssaisoune, M.; Sánchez-García, L.; Prieto-Ballesteros, O.; Parro, V. Contrasted Detection of Lipid Biomarkers in Ediacaran Stromatolites from Amane-n’Tourhart in the Moroccan Anti-Atlas. Geoscience Frontiers 2026, 102251. [Google Scholar] [CrossRef]
- Gouiza, M.; Hall, J.; Welford, J.K. Tectono-Stratigraphic Evolution and Crustal Architecture of the Orphan Basin during North Atlantic Rifting. International Journal of Earth Sciences 2017, 2016 106:3 106, 917–937. [Google Scholar] [CrossRef]
- Missenard, Y.; Zeyen, H.; de Lamotte, D.F.; Leturmy, P.; Petit, C.; Sébrier, M.; Saddiqi, O. Crustal versus Asthenospheric Origin of Relief of the Atlas Mountains of Morocco. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Choubert, G.; Faure-Muret, A. 1. Anti-Atlas (Morocco). Earth. Sci. Rev. 1980, 16, 87–113. [Google Scholar] [CrossRef]
- Thomas, R.J.; Chevallier, L.P.; Gresse, P.G.; Harmer, R.E.; Eglington, B.M.; Armstrong, R.A.; De Beer, C.H.; Martini, J.E.J.; De Kock, G.S.; Macey, P.H.; Ingram, B. A. Precambrian Evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Res. 2002, 118, 1–57. [Google Scholar] [CrossRef]
- Soulaimani, A.; Bouabdelli, M.; Piqué, A. The Upper Neoproterozoic-Lower Cambrian Continental Extension in the Anti-Atlas (Morocco). Bulletin de la Société Géologique de France 2003, 174, 83–92. [Google Scholar] [CrossRef]
- Gasquet, D.; Ennih, N.; Liégeois, J.P.; Soulaimani, A.; Michard, A. The Pan-African Belt. Lecture Notes in Earth Sciences 2008, 116, 33–64. [Google Scholar] [CrossRef]
- Thomas, R.J.; Fekkak, A.; Ennih, N.; Errami, E.; Loughlin, S.C.; Gresse, P.G.; Chevallier, L.P.; Liégeois, J.P. A New Lithostratigraphic Framework for the Anti-Atlas Orogen, Morocco. Journal of African Earth Sciences 2004, 39, 217–226. [Google Scholar] [CrossRef]
- Ait Lahna, A.; Youbi, N.; Tassinari, C.C.G.; Basei, M.A.S.; Ernst, R.E.; Chaib, L.; Barzouk, A.; Mata, J.; Gärtner, A.; Admou, H.; Boumehdi, M.A.; Soderland, U.; Bensalah, M.K.; Bodinier, J.; Maacha, L.; Bekker, A. Revised Stratigraphic Framework for the Lower Anti-Atlas Supergroup Based on U–Pb Geochronology of Magmatic and Detrital Zircons (Zenaga and Bou Azzer-El Graara Inliers, Anti-Atlas Belt, Morocco). Journal of African Earth Sciences 2020, 171, 103946. [Google Scholar] [CrossRef]
- CHOUBERT, G. Histoire Géologique Du Précambrien de l’Anti-Atlas. (1). In Notes Mémoires du Service Géologique du Maroc; 1963. [Google Scholar]
- Youbi, N. Le Volcanisme « Post-Collisionnel »: Un Magmatisme Intraplaque Relié à Des Panaches Mantelliques. Etude Volcanologique et Géochimique. Exemples D‟ Application Dans Le Néoprotérozoïque Terminal (PIII) de L’Anti-Atlas et Le Permien Du Maroc; 1998. [Google Scholar]
- Youbi, N.; Ernst, R.E.; Söderlund, U.; Boumehdi, M.A.; Lahna, A.A.; Gaeta Tassinari, C.; El Moume, W.; Bensalah, M.K. The Central Iapetus Magmatic Province: An Updated Review and Link with the ca. 580 Ma Gaskiers Glaciation. Special Paper of the Geological Society of America 2020, 544, 35–66. [Google Scholar] [CrossRef]
- Mediany, M.A.; Youbi, N.; Ben Chra, M.; Moutbir, O.; Hadimi, I.; Mata, J.; Wotzlaw, J.F.; Madeira, J.; Doblas, M.; Khalaf, E.E.D.A.H.; Oukhro, R.; El Moume, W.; Ounar, J.; Ait Lahna, A.; Boumehdi, M.A.; Bekker, A. Volcanic Response to Post-Pan-African Orogeny Delamination: Insights from Volcanology, Precise U-Pb Geochronology, Geochemistry, and Petrology of the Ediacaran Ouarzazate Group of the Anti-Atlas, Morocco. Minerals 2025, 15, 142. [Google Scholar] [CrossRef]
- Oukhro, R.; Youbi, N.; Kalderon-Asael, B.; Evans, D.A.D.; Pierce, J.; Wotzlaw, J.F.; Ovtcharova, M.; Mata, J.; Mediany, M.A.; Ounar, J.; El Moume, W.; Hadimi, I.; Moutbir, O.; Boumehdi, M.A.; Bekker, A. Volcanic Stratigraphy, Petrology, Geochemistry and Precise U-Pb Zircon Geochronology of the Late Ediacaran Ouarzazate Group at the Oued Dar’a Caldera: Intracontinental Felsic Super-Eruptions in Association with Continental Flood Basalt Magmatism on the W…. Minerals 2025, 15, 776. [Google Scholar] [CrossRef]
- Pierce, J.S.; Evans, D.A.D.; Polomski, D.E.; Youbi, N.; Mediany, M.A.; Ounar, J.; Oukhro, R.; Boumehdi, M.A.; Strauss, J. V.; Keller, C.B.; Gärtner, A.; Ovtcharova, M.; Wotzlaw, J.; Linnemann. Magnetostratigraphic Constraints on the Late Ediacaran Paleomagnetic Enigma. In Sci. Adv.; JOURNAL:JOURNAL:SCIADV;WEBSITE:WEBSITE:AAAS-SITE; ISSUE:ISSUE:DOI, 2025; Volume 11, p. eady3258. [Google Scholar] [CrossRef]
- Tuduri, J.; Chauvet, A.; Barbanson, L.; Bourdier, J.L.; Labriki, M.; Ennaciri, A.; Badra, L.; Dubois, M.; Ennaciri-Leloix, C.; Sizaret, S.; Maacha, L. The Jbel Saghro Au (–Ag, Cu) and Ag–Hg Metallogenetic Province: Product of a Long-Lived Ediacaran Tectono-Magmatic Evolution in the Moroccan Anti-Atlas. Minerals 2018, Vol. 8 8, 592. [Google Scholar] [CrossRef]
- Doblas, M.; López-Ruiz, J.; Cebriá, J.-M.; Youbi, N.; Degroote, E. Mantle Insulation beneath the West African Craton during the Precambrian-Cambrian Transition. Geology 2002, 30, 839–842. [Google Scholar] [CrossRef]
- Youbi, N.; Ernst, R.E.; Mitchell, R.N.; Boumehdi, M.A.; El Moume, W.; Lahna, A.A.; Bensalah, M.K.; Söderlund, U.; Doblas, M.; Tassinari, C.C.G. Preliminary Appraisal of a Correlation Between Glaciations and Large Igneous Provinces Over the Past 720 Million Years. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes 2021, 169–190. [Google Scholar] [CrossRef]
- Ennih, N.; Liégeois, J.P. The Boundaries of the West African Craton, with Special Reference to the Basement of the Moroccan Metacratonic Anti-Atlas Belt. Geol. Soc. Spec. Publ. 2008, 297, 1–17. [Google Scholar] [CrossRef]
- Gasquet, D.; Levresse, G.; Cheilletz, A.; Azizi-Samir, M.R.; Mouttaqi, A. Contribution to a Geodynamic Reconstruction of the Anti-Atlas (Morocco) during Pan-African Times with the Emphasis on Inversion Tectonics and Metallogenic Activity at the Precambrian–Cambrian Transition. Precambrian Res. 2005, 140, 157–182. [Google Scholar] [CrossRef]
- Blein, O.; Baudin, T.; Chèvremont, P.; Soulaimani, A.; Admou, H.; Gasquet, P.; Cocherie, A.; Egal, E.; Youbi, N.; Razin, P.; Bouabdelli, M.; Gombert Bouabd, P. Geochronological Constraints on the Polycyclic Magmatism in the Bou Azzer-El Graara Inlier (Central Anti-Atlas Morocco). Journal of African Earth Sciences 2014, 99, 287–306. [Google Scholar] [CrossRef]
- Ousbih, M.; Ikenne, M.; Cousens, B.; Chelle-Michou, C.; El Bilali, H.; Gaouzi, A.; Markovic, S.; Askkour, F.; Mouhajir, M.; El Mouden, S.; Youbi, N.; Ernst, R.E. Stratigraphy, Geochronology, Geochemistry and Nd Isotopes of the Ouarzazate Group, Anti-Atlas, Morocco: Evidence of a Late Neoproterozoic LIP in the Northwestern Part of the West African Craton. Lithos 2024, 474–475, 107593. [Google Scholar] [CrossRef]
- Walsh, G.J.; Aleinikoff, J.N.; Benziane, F.; Yazidi, A.; Armstrong, T.R. U–Pb Zircon Geochronology of the Paleoproterozoic Tagragra de Tata Inlier and Its Neoproterozoic Cover, Western Anti-Atlas, Morocco. Precambrian Res. 2002, 117, 1–20. [Google Scholar] [CrossRef]
- Schiavo, A.; Taj Eddine, K.; Algouti, A.; Benvenuti, M.; Dal Piaz, G.; Eddebbi, A.; El Boukhari, A.; Laftouhi, N.; Massironi, M.; Moratti, G.; Ouanaimi, H.; Pasquaré, G.; Visona, D. Carte Geologique Du Maroc Au 1/50 000, Feuille Imtir - Notice Explicative. Notes et Mémoires du Service Géologique du Maroc, Feuille Nord 2007, 518bis, 1–96. [Google Scholar]
- Bouabdellah, M.; Maacha, L.; Levresse, G.; Saddiqi, O. The Bou Azzer Co–Ni–Fe–As (±Au ± Ag) District of Central Anti-Atlas (Morocco): A Long-Lived Late Hercynian to Triassic Magmatic-Hydrothermal to Low-Sulphidation Epithermal System 2016, 229–247. [CrossRef]
- Newhall, C.G.; Self, S. The Volcanic Explosivity Index ( VEI): An Estimate of Explosive Magnitude for Historical Volcanism. J. Geophys. Res. 1982, 87, 1231–1238. [Google Scholar] [CrossRef]
- Cas, R.A.F.; Wright, J. V. Volcanism and Tectonic Setting. Volcanic Successions Modern and Ancient 1988, 444–467. [Google Scholar] [CrossRef]
- Raaben, M.E. Some Stromatolites of the Precambrian of Morocco. Earth. Sci. Rev. 1980, 16, 221–234. [Google Scholar] [CrossRef]
- Landing, E.; Geyer, G.; Heldmaier, W. Distinguishing Eustatic and Epeirogenic Controls on Lower-Middle Cambrian Boundary Successions in West Gondwana (Morocco and Iberia). Sedimentology 2006, 53, 899–918. [Google Scholar] [CrossRef]
- Blein, O.; Chèvremont, P.; Razin, P.; Baudin, T.; Gasquet, D. Carte Géologique Du Maroc (1/50 000), Feuille de Bou Azer. Notes et Mémoires du Service Géologique 2013. [Google Scholar]
- Chèvremont, P.; Blein, O.; Razin, P.; Baudin, T.; Barbanson, L.; Gasquet, D.; Soulaimani, A.; Admou, H.; Youbi, N.; Bouabdelli, M.; Anzar-Conseil. Notice Explicative Carte Géologique Maroc (1/50 000), Feuille de Bou Azer; Service Géologique. 2013, Vol. 535. [Google Scholar]
- Busby-Spera, C.J.; White, J.D.L. Variation in Peperite Textures Associated with Differing Host-Sediment Properties. Bull. Volcanol. 1987, 49, 765–776. [Google Scholar] [CrossRef]
- White, J.D.L.; McPhie, J.; Skilling, I. Peperite: A Useful Genetic Term. Bull. Volcanol. 2000, 62, 65–66. [Google Scholar] [CrossRef]
- Skilling, I.P.; White, J.D.L.; McPhie, J. Peperite: A Review of Magma–Sediment Mingling. Journal of Volcanology and Geothermal Research 2002, 114, 1–17. [Google Scholar] [CrossRef]
- Miall, A.D. The Stratigraphic Architecture of Fluvial Depositional Systems. The Geology of Fluvial Deposits 1996, 251–309. [Google Scholar] [CrossRef]
- Platt, N.H.; Wright, V.P. Palustrine Carbonates and the Florida Everglades; towards an Exposure Index for the Fresh-Water Environment? Journal of Sedimentary Research 1992, 62, 1058–1071. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M.; Wright, V.P. Chapter 2 Palustrine Carbonates. Developments in Sedimentology 2010, 61, 103–131. [Google Scholar] [CrossRef]
- Miall, A.D. Fluvial Sedimentology: An Historical Review. Dallas Geological Society 1977, 1–47. [Google Scholar]
- Collinson, J.D. Alluvial Sediments. Sedimentary Environments: Processes, Facies, and Stratigraphy. Blackwell Scientific Publications 1996, 49, 37–82. [Google Scholar] [CrossRef]
- Ghazi, S.; Mountney, N.P. Facies and Architectural Element Analysis of a Meandering Fluvial Succession: The Permian Warchha Sandstone, Salt Range, Pakistan. Sediment. Geol. 2009, 221, 99–126. [Google Scholar] [CrossRef]
- Ubeid, K.F. Quaternary Alluvial Deposits of Wadi Gaza in the Middle of the Gaza Strip (Palestine): Facies, Granulometric Characteristics, and Their Paleoflow Direction. Journal of African Earth Sciences 2016, 118, 274–283. [Google Scholar] [CrossRef]
- Scherer, C.M.S.; Lavina, E.L.C.; Dias Filho, D.C.; Oliveira, F.M.; Bongiolo, D.E.; Aguiar, E.S. Stratigraphy and Facies Architecture of the Fluvial–Aeolian–Lacustrine Sergi Formation (Upper Jurassic), Recôncavo Basin, Brazil. Sediment. Geol. 2007, 194, 169–193. [Google Scholar] [CrossRef]
- Fisher, J.A.; Nichols, G.J.; Waltham, D.A. Unconfined Flow Deposits in Distal Sectors of Fluvial Distributary Systems: Examples from the Miocene Luna and Huesca Systems, Northern Spain. Sediment. Geol. 2007, 195, 55–73. [Google Scholar] [CrossRef]
- Harms, J.C.; Southard, J.B.; Southard, J.B.; Walker, R.G. Structures and Sequences in Clastic Rocks. SEPM Society for Sedimentary Geology 1982, 9. [Google Scholar] [CrossRef]
- Arnott, R.W.C.; Hand, B.M. Bedforms, Primary Structures and Grain Fabric in the Presence of Suspended Sediment Rain. Journal of Sedimentary Research 1989, 59, 1062–1069. [Google Scholar] [CrossRef]
- Chen, L.; Steel, R.J.; Guo, F.; Olariu, C.; Gong, C. Alluvial Fan Facies of the Yongchong Basin: Implications for Tectonic and Paleoclimatic Changes during Late Cretaceous in SE China. J. Asian Earth Sci. 2017, 134, 37–54. [Google Scholar] [CrossRef]
- Miall, A.D. Lithofacies Types and Vertical Profile Models in Braided River Deposits: A Summary. Dallas Geological Society 1977, 597–604. [Google Scholar]
- Ghibaudo, G. Subaqueous Sediment Gravity Flow Deposits: Practical Criteria for Their Field Description and Classification. Sedimentology 1992, 39, 423–454. [Google Scholar] [CrossRef]
- Garcia-Ruiz, J.M. Geochemical Scenarios for the Precipitation of Biomimetic Inorganic Carbonates. SEPM Society for Sedimentary Geology, 2000. [Google Scholar]
- Beck, R.; Andreassen, J.P. Spherulitic Growth of Calcium Carbonate. Cryst. Growth Des. 2010, 10, 2934–2947. [Google Scholar] [CrossRef]
- Meister, P.; Johnson, O.; Corsetti, F.; Nealson, K.H. Magnesium Inhibition Controls Spherical Carbonate Precipitation in Ultrabasic Springwater (Cedars, California) and Culture Experiments. Lecture Notes in Earth Sciences 2011, 131, 101–121. [Google Scholar] [CrossRef]
- Last, W.M. Lacustrine Dolomite—an Overview of Modern, Holocene, and Pleistocene Occurrences. Earth. Sci. Rev. 1990, 27, 221–263. [Google Scholar] [CrossRef]
- Gierlowski-Kordesch, E.H. Chapter 1 Lacustrine Carbonates. Developments in Sedimentology 2010, 61, 1–101. [Google Scholar] [CrossRef]
- Wright, V.P.; Barnett, A.J. An Abiotic Model for the Development of Textures in Some South Atlantic Early Cretaceous Lacustrine Carbonates. Geol. Soc. Spec. Publ. 2015, 418, 209–219. [Google Scholar] [CrossRef]
- Riding, R. Microbial Carbonates: The Geological Record of Calcified Bacterial-Algal Mats and Biofilms. In Sedimentology; STRING:PUBLICATION: WGROUP, 2000; Volume 47, pp. 179–214. [Google Scholar] [CrossRef]
- Dupraz, C.; Visscher, P.T. Microbial Lithification in Marine Stromatolites and Hypersaline Mats. Trends Microbiol. 2005, 13, 429–438. [Google Scholar] [CrossRef]
- Freytet, P.; Verrecchia, E.P. Freshwater Organisms That Build Stromatolites: A Synopsis of Biocrystallization by Prokaryotic and Eukaryotic Algae. Sedimentology 1998, 45, 535–563. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M. Palaeoenvironmental Significance of Palustrine Carbonates and Calcretes in the Geological Record. Earth. Sci. Rev. 2003, 60, 261–298. [Google Scholar] [CrossRef]
- Wright, V.P. Syngenetic Formation of Grainstones and Pisolites from Fenestral Carbonates in Peritidal Settings: DISCUSSION. Journal of Sedimentary Research 1990, 60, 309–310. [Google Scholar] [CrossRef]
- Patt, N.H. Lacustrine Carbonates and Pedogenesis: Sedimentology and Origin of Palustrine Deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology 1989, 36, 665–684. [Google Scholar] [CrossRef]
- Freytet, P.; Verrecchia, E.P. Lacustrine and Palustrine Carbonate Petrography: An Overview. J. Paleolimnol. 2002, 27, 221–237. [Google Scholar] [CrossRef]
- Larena, Z.; Arenas, C.; Baceta, J.I.; Murelaga, X.; Suarez-Hernando, O. Stratigraphy and Sedimentology of Distal-Alluvial and Lacustrine Deposits of the Western-Central Ebro Basin (NE Iberia) Reflecting the Onset of the Middle Miocene Climatic Optimum. Geologica acta 2020, 18, 1–26. [Google Scholar] [CrossRef]
- Noffke, N.; Gerdes, G.; Klenke, T.; Krumbein, W.E. Microbially Induced Sedimentary Structures: A New Category within the Classification of Primary Sedimentary Structures. Journal of Sedimentary Research 2001, 71, 649–656. [Google Scholar] [CrossRef]
- Noffke, N.; Gerdes, G.; Klenke, T.; Krumbein, W.E. Microbially Induced Sedimentary Structures Indicating Climatological, Hydrological and Depositional Conditions within Recent and Pleistocene Coastal Facies Zones (Southern Tunisia). Facies 2001, 44:1 2001(44), 23–30. [Google Scholar] [CrossRef]
- Noffke, N.; Gerdes, G.; Klenke, T. Benthic Cyanobacteria and Their Influence on the Sedimentary Dynamics of Peritidal Depositional Systems (Siliciclastic, Evaporitic Salty, and Evaporitic Carbonatic). Earth. Sci. Rev. 2003, 62, 163–176. [Google Scholar] [CrossRef]
- Noffke, N. Turbulent Lifestyle: Microbial Mats on Earth’s Sandy Beaches—Today and 3 Billion Years Ago. GSA Today 2008, 18, 4–9. [Google Scholar] [CrossRef]
- Noffke, N. The Criteria for the Biogeneicity of Microbially Induced Sedimentary Structures (MISS) in Archean and Younger, Sandy Deposits. Earth. Sci. Rev. 2009, 96, 173–180. [Google Scholar] [CrossRef]
- Noffke, N. Geobiology: Microbial Mats in Sandy Deposits from the Archean Era to Today; Springer Heidelberg., 2010. [Google Scholar]
- Noffke, N. Microbially Induced Sedimentary Structures in Clastic Deposits: Implication for the Prospection for Fossil Life on Mars. Astrobiology 2021, 21, 866–892. [Google Scholar] [CrossRef]
- Arenas-Abad, C.; Vázquez-Urbez, M.; Pardo-Tirapu, G.; Sancho-Marcén, C. Chapter 3 Fluvial and Associated Carbonate Deposits. Developments in Sedimentology 2010, 61, 133–175. [Google Scholar] [CrossRef]
- Klappa, C.F. Lichen Stromatolites; Criterion for Subaerial Exposure and a Mechanism for the Formation of Laminar Calcretes (Caliche). Journal of Sedimentary Research 1979, 49, 387–400. [Google Scholar] [CrossRef]
- Zhou, J.; Chafetz, H.S. The Genesis of Late Quaternary Caliche Nodules in Mission Bay, Texas: Stable Isotopic Compositions and Palaeoenvironmental Interpretation. In Sedimentology; STRING:JOURNAL: CTYPE, 2009; Volume 56, pp. 1392–1410. [Google Scholar] [CrossRef]
- Miller, C.R.; James, N.P. Autogenic Microbial Genesis of Middle Miocene Palustrine Ooids; Nullarbor Plain, Australia. Journal of Sedimentary Research 2012, 82, 633–647. [Google Scholar] [CrossRef]
- Blair, T.C.; McPherson, J.G. Processes and Forms of Alluvial Fans. Geomorphology of Desert Environments 2009, 413–467. [Google Scholar] [CrossRef]
- Davoudi, A.; Khodabakhsh, S.; Rafiei, B. Alluvial Fan Facies of the Qazvin Plain: Paleoclimate and Tectonic Implications during Quaternary. Geopersia 2020, 10, 65–87. [Google Scholar] [CrossRef]
- Waresback, D.B.; Turbeville, B.N. Evolution of a Plio-Pleistocene Volcanogenic-Alluvial Fan: The Puye Formation, Jemez Mountains, New Mexico. GSA Bulletin 1990, 102, 298–314. [Google Scholar] [CrossRef]
- Amezcua, N.; Gawthorpe, R.L.; Marshall, J. Lacustrine Carbonate Lithofacies Characterization, Paleontological Content and Depositional Processes in the Mayrán Basin System. J. South Am. Earth Sci. 2021, 111, 103451. [Google Scholar] [CrossRef]
- Edmonds, M.; Tutolo, B.; Iacovino, K.; Moussallam, Y. Magmatic Carbon Outgassing and Uptake of CO2 by Alkaline Waters. American Mineralogist 2020, 105, 28–34. [Google Scholar] [CrossRef]
- Frugone-Alvarez, M.; Latorre, C.; Barreiro-Lostres, F.; Giralt, S.; Moreno, A.; Polanco-Martinez, J.; Maldonado, A.; Carrevedo, M.L.; Bernárdez, P.; Prego, R.; Huertas, A.D.; Fuentealba, M.; Valero-Garcés, B. Volcanism and Climate Change as Drivers in Holocene Depositional Dynamic of Laguna Del Maule (Andes of Central Chile - 36° S). Climate of the Past 2020, 16, 1097–1125. [Google Scholar] [CrossRef]
- Gourari, L. Etude Hydrochimique, Morphologique, Lithostratigraphique, Sédimentologique et Pétrographique Des Dépôts Travertino-Détritiques Actuels et Plio-Quaternaire Du Bassin Karstique de l’oued Aggaï (Causse de Sefrou Moyen Atlas, Maroc); Université de Fes, 2001. [Google Scholar]















| Facies | Lithology | Sediment characteristics | Geometry / Thickness | Interpretation | Figure |
|---|---|---|---|---|---|
| Gmm1 | Matrix-supported conglomerate. Volcaniclastic conglomerate (peperite). | Sub-rounded andesitic clasts in reddish sandstone matrix; poorly sorted; mudcracks on tops; gradational contacts | Flat to lenticular beds, ~25 cm thick | Volcano-sedimentary deposit (peperite) formed by lava–sediment interaction | Figure 3 (a)–(b), 5 (c)–(e), (g) |
| Gmm2 | Matrix-supported conglomerate. | Sandstone and siltstone clasts, sub-angular to sub-rounded, oriented NE–SW, poorly sorted | Lenticular, channel-shaped base, ~30 cm thick | Deposition by migrating 3D dunes or longitudinal bars within fluvial channels | Figure 3 (a)–(b), 5 (b) |
| Gcm | Clast-supported conglomerate. | Poorly sorted, sub-rounded clasts (mm–cm in size), volcanic or carbonate depending on site | Tabular/lenticular bodies, 0.2–0.25 m thick | Hyperconcentrated flood flow or debris flow deposit | Figure 5 (c) – (d) |
| Gt | Cross-bedded conglomerate | Trough cross-bedding, scoured base, upward fining, mixed detrital grains | Lenticular 0.6 m thick | Channel-fill deposits formed by high-velocity river flows | Figure 3 (a)–(b), 5 (a), (h) |
| Sm | Massive sandstone | Massive, pink to purple, locally silicified, normal grading, no sedimentary structures | Lenticular; 0.2–2 m thick | Rapid deposition from high-energy flows in channels or lateral bars | Figure 3 (a)–(b), 6 (a)–(h) |
| Sh | Planar bedded sandstone | Planar bedding, iron-rich and detrital alternations, ripple marks | Tabular/lenticular, decimetric–metric | Tractional deposits under upper flow regime in channels, flood-related | Figure 3 (a)–(b), 6 (b)–(j) |
| Fm2 | Massive, silty mudstone | Highly friable, non-erosive base, fine-grained | Tabular/lenticular, 0.15–4 m thick | Suspension fallout during waning floods (final stage in turbidite deposition) | Figure 3 (a)–(b), 5 |
| Lm | Massive limestone | Sparitic to micro-sparitic calcite, spherulitic, partially silicified | Tabular/lenticular, up to 1 m thick | Lacustrine to deep-water, fluviolacustrine carbonate deposition | Figure 3 (a)–(b), 7 (a)–(b), (d), (i) |
| Ln | Nodular limestone | Alternating micritic and detrital lamina, spherulitic and stromatolitic textures | Lenticular/tabular, 0.25–1.25 m thick | Transitional facies between fluvial (Fm1) and lacustrine (Lm) facies | Figure 3 (a)–(b), 7 (c), (h) |
| Ll | Laminar limestone | Horizontal or inclined microbial lamina, mudcracks, ripple marks, MISS | Tabular/lenticular, 0.5–4 m thick | Shallow-water, lacustrine environment with periodic emersion | Figure 5 and Figure 8 (a)–(h), 9 (a)–(g) |
| Fm1 | Massive silty mudstone with limestone nodules | Red–purple siltstone with white carbonate nodules, microsparitic to sparitic calcite | Tabular/lenticular, 0.3–3.5 m thick | Flood-plain environment with fluvial channels, transitional to carbonates | Figure 3 (a)–(b), 7 (a)–(b), (g) |
| Lmc | Massive limestone with scattered clasts | Limestone with detrital quartz, plagioclase, and iron oxides | Lenticular, 0.2–0.35 m thick | Deposition in relatively deep lacustrine setting with increasing energy upsection | Figure 3 (a)–(b), 7 (e)–(f), (j) |
| Ls1 | Inclined, columnar stromatolitic limestone | Alternating red detrital and white carbonate lamina; inclined columns | Biohermal; up to 5 m thick | Formed in high-energy, submerged environment in the lake | Figure 3 (a)–(b), 10 (a)–(c), 12 (b)–(c) |
| Ls2 | Domal stromatolitic limestone | Linked vertical domes up to 80 cm in diameter, red–white alternations | 2 m thick | Formed in aquatic settings with laminar flow (palustrine or low-energy riverbeds) | Figure 10 (e)–(g), 12 (d)–(f) |
| Ls3 | Planar laminated stromatolitic limestone | Alternating red–white lamina; micro-domal to planar structures, silicified | 0.3 m thick | Shallow-water lacustrine stromatolites | Figure 10 (h)–(j), 12 (a)–(f) |
| Volcanic facies | Andesites, Breccia andesites, Rhyolites | Porphyritic texture, altered plagioclase, pyroxene, quartz in microlitic matrix | — | Volcanic unit (pre and post-caldera stage), underlying sedimentary succession | Figure 11 (a)–(d) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
