Submitted:
30 January 2026
Posted:
03 February 2026
You are already at the latest version
Abstract

Keywords:
1. Historical Evolution of Sonodynamic Therapy
1.1. Early Research and Discoveries
1.2. Progression and Challenges

2. Historical Evolution of Nanocarriers
3. Mechanisms of Sonodynamic Therapy and Nanocarrier Synergy
3.1. Mechanisms of Sonodynamic Therapy in Disease Treatment
3.1.1. Ultrasound-Tissue Interactions: Cavitation-Centered Biophysics
3.1.2. ROS Generation: Multiple Co-Existing Routes
3.1.3. Downstream Cell Death and Immunological Consequences
3.1.4. Key Determinants of SDT Efficacy and Mechanistic Levers

3.2. Mechanisms of Nanocarrier-Mediated Drug Delivery
3.2.1. Systemic Fate: Protein Corona, Clearance, and “Stealth”
3.2.2. Tumor Accumulation: EPR, Transcytosis, and Heterogeneity
3.2.3. Cellular Internalization and Subcellular Trafficking
3.2.4. Release Mechanisms: Diffusion, Degradation, and Stimuli Responsiveness
| Category (Representative Examples) | Key ROS Types and Mechanistic Features | Advantages / Limitations | Standard Delivery Methods | Representative References |
| Porphyrins / PpIX-precursors | Mainly 1O2 plus radicals depending on microenvironment | Advantages: Clinically familiar; strong redox activity; benefits from encapsulation to improve PK Limitations: Hydrophobicity/aggregation; potential dark toxicity; oxygen dependence |
Liposomes; polymeric NPs; albumin-based carriers | [348,349] |
| Chlorin derivatives (e.g., Ce6, Photochlor) | Predominantly 1O2; can be boosted by oxygenation modules | Advantages: Strong ROS yield; easy co-loading with O2 modulators Limitations: Aggregation quenching; hypoxia sensitivity |
Microbubbles/nanobubbles; lipid NPs; membrane camouflage | [205,300] |
| Cyanine / heptamethine dyes (e.g., IR780, iodinated cyanine) | Mixed with radical and 1O2; often coupled to hypoxia relief or catalytic ROS loops | Advantages: NIR imaging/theranostics-ready; mitochondrial affinity Limitations: Photothermal/sonothermal crosstalk; instability; higher off-target risk without “stealth” |
Hollow MnO2 shells; mesoporous silica; antibody conjugates | [75,98,307] |
| AIEgens / AIE-active sonosensitizers | Often designed toward radical under hypoxia; aggregation-tolerant | Advantages: “Anti-ACQ” by design; good for high-loading nanoformulations Limitations: Chemistry varies; activation threshold needs tuning |
Polymeric micelles; amphiphilic assemblies; targeted ligands | [74,237] |
| Inorganic semiconductors / sonocatalysts / piezoelectric | •OH / O2•− via mechano-electronic charge separation / catalytic surfaces | Advantages: High stability; oxygen-independent (partly); can lower cavitation threshold Limitations: Potential long-term biosafety; clearance; surface defects variability |
Inorganic core–shell; metal-doped catalysts; membrane camouflage | [150,162,231] |
| MOF / COF framework-based | Frequently radical + catalytic cascades (Fenton-like, GSH-responsive) | Advantages: High payload capacity; modular catalytic nodes; can integrate imaging + TME triggers Limitations: Stability/ion release; reproducibility; biodegradation products |
MOF/COF nanoparticles; bacteria/OMV modification; HA coating | [109,114,116,297] |
3.3. Synergy Between Sonodynamic Therapy and Nanocarriers
3.3.1. Pharmacokinetic and Spatial Control: Concentrating the Sensitizer Where Ultrasound Will Act
3.3.2. Ultrasound-Enhanced Delivery: Sonoporation and Barrier Modulation
3.3.3. ROS Amplification and Hypoxia Mitigation: Oxygen-Carrying and Oxygen-Generating Nanoplatforms
3.3.4. Engineering Cavitation and Energy Transduction: Making Ultrasound “Work Harder” at the Tumor
3.3.5. Immunological Synergy: From Local SDT to Systemic Control
4. Nanocarrier-Based Strategies for Enhancing SDT Targeting and Efficacy
4.1. Targeted Drug Delivery Systems in SDT
4.1.1. Passive Targeting: Circulation Engineering and Transport Optimization
4.1.2. Active Targeting: Ligand/Receptor Recognition and Multi-Receptor Strategies
4.1.3. Biomimetic Targeting: Cell-Membrane Coating and Endogenous Trafficking
4.1.4. Subcellular Targeting: Mitochondria/Lysosome/Nucleus-Directed SDT

4.2. Tumor Microenvironment Targeting
4.2.1. Hypoxia Alleviation: Oxygen Delivery and Oxygen Generation
4.2.2. Redox Targeting: GSH Depletion and ROS Amplification Loops
4.2.3. ECM/Stromal Targeting: Penetration Enhancement and Immune Infiltration
4.2.4. Immune Microenvironment Targeting: ICD, STING, and Macrophage Reprogramming
| TME bottleneck | Nanoengineering Techniques | How it Boosts SDT | Key Risk Points | Representative References |
| Hypoxia | O2 carriers (e.g., PFC-based) | Restores O2-dependent ROS; improves response consistency | Gas embolism concerns; formulation complexity | [180,301] |
| Hypoxia | Catalytic O2 generation (MnO2, CAT-like) | Converts H2O2 to O2; supports sustained ROS production | Metal ion release; H2O2 dependency | [258,300] |
| Hypoxia | O2-releasing compounds (CaO2) | Local O2 supply under hypoxia; “always-on” oxygenation | Local alkalinization; Ca2+ overload/toxicity | [181,303] |
| High GSH / strong antioxidant buffering | GSH-consuming shells (MnO2, pMOF) | Depletes GSH leading to less ROS quenching; can unlock cascade catalysis | Oxidative stress to normal tissues; Mn-related safety | [179,235] |
| Redox resilience | Self-amplifying ROS loops (CDT/SDT cascades) | SDT initiates ROS leading to feeds secondary radical generation | Off-target inflammation; metal-catalyst byproducts | [177,306] |
| Dense ECM / high interstitial resistance | ECM degradation (e.g., collagenase) | Improves penetration + intratumoral distribution | Vascular leakage; inflammation; metastasis concern if uncontrolled | [311,313] |
| Mechanical barriers | Mechanical microenvironment modulation | Lowers transport resistance; improves perfusion/uptake | Edema; unpredictable perfusion changes | [308] |
| Immunosuppression | STING agonist co-delivery / sono-STING | SDT→ICD + innate activation → stronger T cell priming | Systemic cytokine risk; autoimmunity-like toxicity | [314,343] |
| Immune resistance (checkpoint dominance) | SDT + ICB / nanovaccine | SDT-induced ICD supplies antigens; ICB prevents T cell exhaustion | Immune-related adverse events | [344,345] |
| TAM polarization / poor phagocytosis | siRNA / magneto-acoustic immunomodulation | Reprograms macrophages; increases antigen presentation & clearance | Off-target gene silencing; RES accumulation | [315] |
4.3. Combining SDT with Other Modalities Using Nanocarriers
4.3.1. SDT + Chemotherapy/Molecular Inhibitors
4.3.2. SDT + Gene/RNA Therapy (RNAi/CRISPR-Adjacent Strategies)
4.3.3. SDT + Immunotherapy (Checkpoint Blockade, STING Agonists, Nanovaccines)
4.3.4. SDT + Ferroptosis / Chemodynamic Therapy (CDT) / Catalytic Therapies
4.3.5. SDT + Phototherapy (PDT/PTT) and Multi-Trigger Platforms
| Combination direction | Core logic of synergy | Carrier Design Notes | Representative References |
| Chemo / metabolic inhibitors | SDT increases permeability + ROS stress → sensitizes to chemo; chemo can weaken repair pathways | Co-loading vs. sequential release; ultrasound-triggered burst to align timing | [108,171,182,293] |
| Gene / RNA therapeutics | Knock down antioxidant/escape pathways → SDT ROS becomes “unbuffered”; can rewire immune context | Protect nucleic acids; endosomal escape; redox- or US-triggered unpacking | [296,315,325] |
| Immunotherapy (STING, ICB, vaccines) | SDT → ICD/DAMPs + antigen release; immune adjuvants/ICB sustain systemic response | Keep immunostimulant shielded systemically; tumor-local activation; avoid cytokine burst | [183,295,314,343,344,345] |
| Ferroptosis / CDT | SDT ROS seeds lipid peroxidation; CDT supplies •OH; ferroptosis disables GSH/GPX4/FSP1 defenses → positive feedback | Metal/catalyst nodes + GSH depletion; membrane/mitochondria targeting improves efficiency | [177,304,305,306,307,352] |
| PDT/PTT | PTT improves perfusion/oxygenation and accelerates kinetics; PDT adds orthogonal ROS modality; multimodal imaging-ready | Avoid overheating; choose trigger hierarchy (US-first vs. light-first); spatial co-localization | [116,300,301] |
5. Clinical Applications and Translational Research
5.1. Preclinical Studies
5.1.1. Cancer Models (Solid Tumors, Orthotopic Tumors)
5.1.2. Immunological “Second Wave” of SDT Efficacy
5.1.3. Brain Tumor Relevant Preclinical Evidence
5.1.4. Anti-Bacterial / Anti-Biofilm Applications
5.2. Clinical Trials and Progress
5.3. Limitations and Challenges in Clinical Translation
5.3.1. Biological Delivery Variability
5.3.2. Ultrasound Dosimetry, Standardization, and Real-Time Monitoring
5.3.3. Safety of Complex Nanocarriers: Immunogenicity, Long-Term Fate, and “Silent” Accumulation
5.3.4. Clinical trial design challenges
6. Future Perspectives and Research Directions
6.1. Nanocarrier Design for Personalized SDT
6.2. SDT + Blood Brain Barrier (BBB) Modulation / Enhanced Brain Delivery
6.3. Closed-Loop Ultrasound Control

7. Conclusion
References
- Tachibana, K., Feril Jr, L. B., & Ikeda-Dantsuji, Y. (2008). Sonodynamic therapy. Ultrasonics, 48(4), 253-259.
- Shibaguchi, H., Tsuru, H., Kuroki, M., & Kuroki, M. (2011). Sonodynamic cancer therapy: a non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer. Anticancer research, 31(7), 2425-2429.
- Ouyang, J., Tang, Z., Farokhzad, N., Kong, N., Kim, N. Y., Feng, C., ... & Tao, W. (2020). Ultrasound mediated therapy: recent progress and challenges in nanoscience. Nano Today, 35, 100949. [CrossRef]
- Yan, P., Liu, L. H., & Wang, P. (2020). Sonodynamic therapy (SDT) for cancer treatment: advanced sensitizers by ultrasound activation to injury tumor. ACS applied bio materials, 3(6), 3456-3475. [CrossRef]
- Hirschberg, H., & Madsen, S. J. (2017). Synergistic efficacy of ultrasound, sonosensitizers and chemotherapy: a review. Therapeutic Delivery, 8(5), 331-342. [CrossRef]
- Rosenthal, I., Sostaric, J. Z., & Riesz, P. (2004). Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound. Ultrasonics sonochemistry, 11(6), 349-363. [CrossRef]
- Rengeng, L., Qianyu, Z., Yuehong, L., Zhongzhong, P., & Libo, L. (2017). Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis and photodynamic therapy, 19, 159-166. [CrossRef]
- Pan, X., Wang, H., Wang, S., Sun, X., Wang, L., Wang, W., ... & Liu, H. (2018). Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Science China Life sciences, 61(4), 415-426. [CrossRef]
- Yumita, N., Nishigaki, R., Umemura, K., & Umemura, S. I. (1989). Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Japanese Journal of Cancer Research, 80(3), 219-222. [CrossRef]
- Umemura, S. I., Yumita, N., Nishigaki, R., & Umemura, K. (1990). Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Japanese Journal of Cancer Research, 81(9), 962-966. [CrossRef]
- Wang, R., Liu, Q., Gao, A., Tang, N., Zhang, Q., Zhang, A., & Cui, D. (2022). Recent developments of sonodynamic therapy in antibacterial application. Nanoscale, 14(36), 12999-13017. [CrossRef]
- Yang, N., Li, J., Yu, S., Xia, G., Li, D., Yuan, L., ... & Li, J. (2024). Application of nanomaterial-based sonodynamic therapy in tumor therapy. Pharmaceutics, 16(5), 603. [CrossRef]
- Choi, V., Rajora, M. A., & Zheng, G. (2020). Activating drugs with sound: mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjugate Chemistry, 31(4), 967-989. [CrossRef]
- Wu, X., Chen, F., Zhang, Q., & Tu, J. (2024). What Is the Magical Cavitation Bubble: A Holistic Perspective to Trigger Advanced Bubbles, Nano-Sonocatalysts, and Cellular Sonosensitizers. BME frontiers, 5, 0067. [CrossRef]
- Huang, H., Zheng, Y., Chang, M., Song, J., Xia, L., Wu, C., ... & Chen, Y. (2024). Ultrasound-based micro-/nanosystems for biomedical applications. Chemical Reviews, 124(13), 8307-8472. [CrossRef]
- Lin, J., Li, D., Li, C., Zhuang, Z., Chu, C., Ostrikov, K. K., ... & Wang, P. (2023). A review on reactive oxygen species (ROS)-inducing nanoparticles activated by uni-or multi-modal dynamic treatment for oncotherapy. Nanoscale, 15(28), 11813-11833. [CrossRef]
- Zhou, Z., Song, J., Nie, L., & Chen, X. (2016). Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical society reviews, 45(23), 6597-6626. [CrossRef]
- Przygoda, M., Bartusik-Aebisher, D., Dynarowicz, K., Cieślar, G., Kawczyk-Krupka, A., & Aebisher, D. (2023). Cellular mechanisms of singlet oxygen in photodynamic therapy. International Journal of Molecular Sciences, 24(23), 16890. [CrossRef]
- Yang, B., Chen, Y., & Shi, J. (2019). Reactive oxygen species (ROS)-based nanomedicine. Chemical reviews, 119(8), 4881-4985. [CrossRef]
- Chen, J., Zhou, Q., & Cao, W. (2024). Multifunctional porphyrin-based sonosensitizers for sonodynamic therapy. Advanced Functional Materials, 34(40), 2405844. [CrossRef]
- Tsolekile, N., Nelana, S., & Oluwafemi, O. S. (2019). Porphyrin as diagnostic and therapeutic agent. Molecules, 24(14), 2669. [CrossRef]
- Xiong, W., Wang, P., Hu, J., Jia, Y., Wu, L., Chen, X., ... & Wang, X. (2015). A new sensitizer DVDMS combined with multiple focused ultrasound treatments: an effective antitumor strategy. Scientific reports, 5(1), 17485. [CrossRef]
- McHale, A. P., Callan, J. F., Nomikou, N., Fowley, C., & Callan, B. (2016). Sonodynamic therapy: concept, mechanism and application to cancer treatment. Therapeutic ultrasound, 429-450.
- Zhou, Y., Wang, M., & Dai, Z. (2020). The molecular design of and challenges relating to sensitizers for cancer sonodynamic therapy. Materials Chemistry Frontiers, 4(8), 2223-2234. [CrossRef]
- Zhu, K., Wang, J., Wang, Z., Chen, Q., Song, J., & Chen, X. (2025). Ultrasound-Activated Theranostic Materials and Their Bioapplications. Angewandte Chemie International Edition, 64(22), e202422278. [CrossRef]
- Wang, X., Zhong, X., Gong, F., Chao, Y., & Cheng, L. (2020). Newly developed strategies for improving sonodynamic therapy. Materials Horizons, 7(8), 2028-2046. [CrossRef]
- Son, S., Kim, J. H., Wang, X., Zhang, C., Yoon, S. A., Shin, J., ... & Kim, J. S. (2020). Multifunctional sonosensitizers in sonodynamic cancer therapy. Chemical Society Reviews, 49(11), 3244-3261. [CrossRef]
- Wan, G. Y., Liu, Y., Chen, B. W., Liu, Y. Y., Wang, Y. S., & Zhang, N. (2016). Recent advances of sonodynamic therapy in cancer treatment. Cancer biology & medicine, 13(3), 325-338. [CrossRef]
- Ding, Y., Yang, Y., Aras, O., An, F., Zhou, M., & Chai, Y. (2025). Development and Application of Organic Sonosensitizers in Cancer Therapy. Aggregate, e70032.
- Rao, T. R., Sravani, B., & Aarthi, R. (2025). Nanocarriers in Drug Delivery Systems: An Overview. Journal of Advanced Scientific Research, 16(03), 8-14. [CrossRef]
- Karmaker, S., Rosales, P. D., Tirumuruhan, B., Viravalli, A., & Boehnke, N. (2025). More than a delivery system: the evolving role of lipid-based nanoparticles. Nanoscale. [CrossRef]
- Kibuuka, R. S. (2024). Nanomedicine and Targeted Drug Delivery: Advances and Challenges. [CrossRef]
- Yanar, F., Carugo, D., & Zhang, X. (2023). Hybrid nanoplatforms comprising organic nanocompartments encapsulating inorganic nanoparticles for enhanced drug delivery and bioimaging applications. Molecules, 28(15), 5694. [CrossRef]
- Sharma, V. K., & Agrawal, M. K. (2021). A historical perspective of liposomes-a bio nanomaterial. Materials Today: Proceedings, 45, 2963-2966. [CrossRef]
- Bahutair, W. N., Abuwatfa, W. H., & Husseini, G. A. (2022). Ultrasound triggering of liposomal nanodrugs for cancer therapy: a review. Nanomaterials, 12(17), 3051. [CrossRef]
- Jahangir, M. A., Mohanty, D., Choudhury, A., & Imam, S. S. (2023). Theranostic Applications of Functionalized Vesicular Carriers: Theranostic Applications of Functionalized Vesicular Carriers (Liposomes, Niosomes, Virosomes, Ethosomes, Phytosomes). In Multifunctional And Targeted Theranostic Nanomedicines: Formulation, Design And Applications (pp. 49-76). Singapore: Springer Nature Singapore.
- Fateh, S. T., Moradi, L., Kohan, E., Hamblin, M. R., & Dezfuli, A. S. (2021). Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein Journal of Nanotechnology, 12(1), 808-862. [CrossRef]
- Entzian, K., & Aigner, A. (2021). Drug delivery by ultrasound-responsive nanocarriers for cancer treatment. Pharmaceutics, 13(8), 1135. [CrossRef]
- Liu, F., Wu, L., Chen, L., Qi, X., Ge, Y., & Shen, S. (2016). Ultrasound-guided tumor sonodynamic therapy based on sonosensitizer liposome. Chemistry Letters, 45(11), 1304-1306. [CrossRef]
- Souri, S., Jadidi, M., Hasanzadeh, H., Khani, T., & Semnani, V. (2023). An In-Vivo Study of Sonodynamic Therapy with Encapsulated Hematoporphyrin. Frontiers in Biomedical Technologies, 10(2), 140-149. [CrossRef]
- Emiliani, C., Delmelle, M., Cannistraro, S., & Van de Vorst, A. (1983). Solubility of hematoporphyrin and photodynamic damages in liposomal systems: optical and electron spin resonance studies. Photobiochemistry and Photobiophysics, 5(2), 119-128. [CrossRef]
- Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews, 65(1), 36-48. [CrossRef]
- Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in pharmacology, 6, 286. [CrossRef]
- Pattni, B. S., Chupin, V. V., & Torchilin, V. P. (2015). New developments in liposomal drug delivery. Chemical reviews, 115(19), 10938-10966. [CrossRef]
- Chelliah, R., Rubab, M., Vijayalakshmi, S., Karuvelan, M., Barathikannan, K., & Oh, D. H. (2025). Liposomes for drug delivery: Classification, therapeutic applications, and limitations. Next Nanotechnology, 8, 100209. [CrossRef]
- Sun, Y., Wang, H., Wang, P., Zhang, K., Geng, X., Liu, Q., & Wang, X. (2019). Tumor targeting DVDMS-nanoliposomes for an enhanced sonodynamic therapy of gliomas. Biomaterials science, 7(3), 985-994. [CrossRef]
- Zhao, H., Du, F., Huang, J., Guo, R., Feng, Z., Wang, Z., & Qiu, L. (2025). Biomimetic liposomal nanovesicles remodel the tumor immune microenvironment to augment sono-immunotherapy. Journal of Controlled Release, 113830. [CrossRef]
- Zhang, A., Zheng, X., Yan, G., Liu, X., Xie, D., Xu, X., ... & Liu, Z. (2025). Sonodynamic biomimetic-nanomedicine fight cancers. Journal of Nanobiotechnology, 23(1), 548. [CrossRef]
- Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F., & Chan, W. C. (2016). Analysis of nanoparticle delivery to tumours. Nature reviews materials, 1(5), 1-12. [CrossRef]
- Sun, R., Xiang, J., Zhou, Q., Piao, Y., Tang, J., Shao, S., ... & Shen, Y. (2022). The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives. Advanced drug delivery reviews, 191, 114614. [CrossRef]
- Shi, Y., Van Der Meel, R., Chen, X., & Lammers, T. (2020). The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 10(17), 7921. [CrossRef]
- Inglut, C. T., Sorrin, A. J., Kuruppu, T., Vig, S., Cicalo, J., Ahmad, H., & Huang, H. C. (2020). Immunological and toxicological considerations for the design of liposomes. Nanomaterials, 10(2), 190. [CrossRef]
- Ishida, T., Harashima, H., & Kiwada, H. (2002). Liposome clearance. Bioscience reports, 22(2), 197-224. [CrossRef]
- Zahednezhad, F., Saadat, M., Valizadeh, H., Zakeri-Milani, P., & Baradaran, B. (2019). Liposome and immune system interplay: Challenges and potentials. Journal of Controlled Release, 305, 194-209. [CrossRef]
- van Etten, E. W., ten Kate, M. T., Snijders, S. V., & Bakker-Woudenberg, I. A. (1998). Administration of liposomal agents and blood clearance capacity of the mononuclear phagocyte system. Antimicrobial Agents and Chemotherapy, 42(7), 1677-1681. [CrossRef]
- Basak, S., Das, T. K., & Ganguly, S. (2025). A review on tumor-targeting liposomes: Fabrication, mechanism and applications. Biochemical Pharmacology, 117460. [CrossRef]
- Liu, Y., Wang, T., Chi, X., Yu, S., He, W., He, H., ... & Zhang, J. (2025). Modeling based dynamics mechanism and pathway of liposome penetration in multicellular tumor spheroid for liposome optimization. International Journal of Pharmaceutics, 671, 125237. [CrossRef]
- Maji, I., Mahajan, S., Sriram, A., Mehra, N. K., & Singh, P. K. (2023). Polymeric nanomaterials: Fundamentals and therapeutic applications. In Nanomaterial-based drug Delivery systems: therapeutic and theranostic applications (pp. 33-64). Cham: Springer International Publishing.
- Locatelli, E., & Comes Franchini, M. (2012). Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. Journal of Nanoparticle Research, 14(12), 1316. [CrossRef]
- Elmowafy, E. M., Tiboni, M., & Soliman, M. E. (2019). Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation, 49(4), 347-380. [CrossRef]
- Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397. [CrossRef]
- Bhardwaj, H., & Jangde, R. K. (2023). Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications. Next Nanotechnology, 2, 100013. [CrossRef]
- Eltaib, L. (2025). Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication. Polymers, 17(7), 833. [CrossRef]
- Floyd, T. G., Gurnani, P., & Rho, J. Y. (2025). Characterisation of polymeric nanoparticles for drug delivery. Nanoscale, 17(13), 7738-7752. [CrossRef]
- Parveen, S., Gupta, P., Kumar, S., & Banerjee, M. (2023). Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Medicine in drug discovery, 20, 100165. [CrossRef]
- Moreno-Lanceta, A., Medrano-Bosch, M., Edelman, E. R., & Melgar-Lesmes, P. (2022). Polymeric Nanoparticles for Targeted Drug and Gene Delivery Systems. In Pharmaceutical Nanobiotechnology for Targeted Therapy (pp. 561-608). Cham: Springer International Publishing.
- Geszke-Moritz, M., & Moritz, M. (2024). Biodegradable polymeric nanoparticle-based drug delivery systems: comprehensive overview, perspectives and challenges. Polymers, 16(17), 2536.
- Mares, A. G., Pacassoni, G., Marti, J. S., Pujals, S., & Albertazzi, L. (2021). Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. PLoS One, 16(6), e0251821. [CrossRef]
- He, C., Hu, Y., Yin, L., Tang, C., & Yin, C. (2010). Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31(13), 3657-3666. [CrossRef]
- Lin, S., Zhu, L., Li, Z., Yue, S., Wang, Z., Xu, Y., ... & Geng, J. (2023). Ultrasound-responsive glycopolymer micelles for targeted dual drug delivery in cancer therapy. Biomaterials Science, 11(18), 6149-6159. [CrossRef]
- Zhang, Y., Khan, A. R., Yang, X., Shi, Y., Zhao, X., & Zhai, G. (2021). A sonosensitiser-based polymeric nanoplatform for chemo-sonodynamic combination therapy of lung cancer. Journal of Nanobiotechnology, 19(1), 57. [CrossRef]
- Huang, Y., Ouyang, W., Lai, Z., Qiu, G., Bu, Z., Zhu, X., ... & Liu, J. (2024). Nanotechnology-enabled sonodynamic therapy against malignant tumors. Nanoscale advances, 6(8), 1974-1991. [CrossRef]
- Fan, D., Cao, Y., Cao, M., Wang, Y., Cao, Y., & Gong, T. (2023). Nanomedicine in cancer therapy. Signal Transduction and Targeted Therapy, 8(1), 293.
- Deng, K., Yu, Y., Zhao, Y., Li, J., Li, K., Zhao, H., ... & Huang, S. (2023). Tumor-targeted AIE polymeric micelles mediated immunogenic sonodynamic therapy inhibits cancer growth and metastasis. Nanoscale, 15(17), 8006-8018. [CrossRef]
- Ning, Y., Zhang, Z., Yasen, A., Sun, J., Zhou, Y., Tian, Q., & Cai, Q. (2025). Hyaluronic Acid-Modified Hollow MnO₂-Loaded IR780 Smart Theranostic Platform for Dual Imaging Guided Sonodynamic Therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138224. [CrossRef]
- Zheng, F., Zhang, P., Zhang, Y., Long, H., Zhu, F., Chen, H., & Gao, Y. (2025). Aptamer-Modified Mesoporous Silica Nanoparticle for Nitric Oxide-Enhanced Targeted Sonodynamic Therapy against Lung Cancer. ACS Applied Nano Materials, 8(10), 5179-5192. [CrossRef]
- Herdiana, Y., Wathoni, N., Shamsuddin, S., & Muchtaridi, M. (2022). Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OpenNano, 7, 100048. [CrossRef]
- Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in polymer science, 36(7), 887-913. [CrossRef]
- Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., ... & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature materials, 8(7), 543-557. [CrossRef]
- Owens III, D. E., & Peppas, N. A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International journal of pharmaceutics, 307(1), 93-102.
- Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics, 5(4), 505-515. [CrossRef]
- Dobrovolskaia, M. A., & McNeil, S. E. (2007). Immunological properties of engineered nanomaterials. Nature nanotechnology, 2(8), 469-478. [CrossRef]
- Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2020). Nanocarriers as an emerging platform for cancer therapy. Nano-enabled medical applications, 61-91. [CrossRef]
- Unnikrishnan, G., Joy, A., Megha, M., Kolanthai, E., & Senthilkumar, M. (2023). Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. Discover Nano, 18(1), 157. [CrossRef]
- Eker, F., Duman, H., Akdaşçi, E., Bolat, E., Sarıtaş, S., Karav, S., & Witkowska, A. M. (2024). A comprehensive review of nanoparticles: from classification to application and toxicity. Molecules, 29(15), 3482. [CrossRef]
- Patil, T., Gambhir, R., Vibhute, A., & Tiwari, A. P. (2023). Gold nanoparticles: synthesis methods, functionalization and biological applications. Journal of Cluster Science, 34(2), 705-725. [CrossRef]
- Stiufiuc, G. F., & Stiufiuc, R. I. (2024). Magnetic nanoparticles: synthesis, characterization, and their use in biomedical field. Applied Sciences, 14(4), 1623. [CrossRef]
- Gordel-Wójcik, M., Pietrzak, M., Kołkowski, R., & Zych, E. (2024). Silica-coated gold nanoshells: Surface chemistry, optical properties and stability. Journal of Luminescence, 270, 120565. [CrossRef]
- Yang, M., Wang, X., Peng, M., Wang, F., Hou, S., Xing, R., & Chen, A. (2025). Nanomaterials enhanced sonodynamic therapy for multiple tumor treatment. Nano-Micro Letters, 17(1), 157. [CrossRef]
- Hang, Y., Wang, A., & Wu, N. (2024). Plasmonic silver and gold nanoparticles: shape-and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chemical Society Reviews, 53(6), 2932-2971. [CrossRef]
- Alguno, A. C., Capangpangan, R. Y., Dumancas, G. G., Lubguban, A. A., Malaluan, R. M., & Rivera, R. B. P. (2025). Properties of Gold Nanoparticles and Their Functionalization. In Gold Nanoparticles: Green Synthesis, Characterization, and Multifaceted Applications (pp. 65-75). Singapore: Springer Nature Singapore.
- Shanei, A., & Shanei, M. M. (2017). Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method. Ultrasonics Sonochemistry, 34, 45-50. [CrossRef]
- McLaughlan, J. R. (2018). Controllable nucleation of cavitation from plasmonic gold nanoparticles for enhancing high intensity focused ultrasound applications. Journal of Visualized Experiments: JoVE, (140), 58045.
- Chen, P., Zhang, P., Shah, N. H., Cui, Y., & Wang, Y. (2023). A comprehensive review of inorganic sonosensitizers for sonodynamic therapy. International journal of molecular sciences, 24(15), 12001. [CrossRef]
- Qin, L., Wei, W., Wang, K., Shi, X., Ling, G., & Zhang, P. (2024). Ultrasound-responsive heterojunction sonosensitizers for multifunctional synergistic sonodynamic therapy. Chinese Chemical Letters, 110777. [CrossRef]
- Brazzale, C., Canaparo, R., Racca, L., Foglietta, F., Durando, G., Fantozzi, R., ... & Serpe, L. (2016). Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine, 11(23), 3053-3070. [CrossRef]
- Żelechowska-Matysiak, K., Wawrowicz, K., Wierzbicki, M., Budlewski, T., Bilewicz, A., & Majkowska-Pilip, A. (2023). Doxorubicin-and trastuzumab-modified gold nanoparticles as potential multimodal agents for targeted therapy of HER2+ cancers. Molecules, 28(6), 2451. [CrossRef]
- Kobzev, D., Semenova, O., Aviel-Ronen, S., Kulyk, O., Carmieli, R., Mirzabekov, T., ... & Patsenker, L. (2024). Sonodynamic Therapy for HER2+ Breast Cancer with Iodinated Heptamethine Cyanine–Trastuzumab Conjugate. International Journal of Molecular Sciences, 25(18), 10137. [CrossRef]
- Zhou, Y., Cao, Z., Jiang, L., Chen, Y., Cui, X., Wu, J., ... & Ying, T. (2024). Magnetically actuated sonodynamic nanorobot collectives for potentiated ovarian cancer therapy. Frontiers in Bioengineering and Biotechnology, 12, 1374423. [CrossRef]
- Wang, D., Li, T., Lin, L., Meng, M., Hao, K., Guo, Z., ... & Chen, X. (2024). Magnetic covalent organic framework-based nanoadjuvant for multi-amplify sonodynamic antitumor therapy effect. Nano Today, 54, 102088. [CrossRef]
- Zhu, Y., Arkin, G., He, T., Guo, F., Zhang, L., Wu, Y., ... & Xie, Z. (2024). Ultrasound imaging guided targeted sonodynamic therapy enhanced by magnetophoretically controlled magnetic microbubbles. International journal of pharmaceutics, 655, 124015. [CrossRef]
- Sun, L., Wang, P., Zhang, J., Sun, Y., Sun, S., Xu, M., ... & Cui, L. (2021). Design and application of inorganic nanoparticles for sonodynamic cancer therapy. Biomaterials science, 9(6), 1945-1960. [CrossRef]
- Lim, S. H., Wong, T. W., & Tay, W. X. (2024). Overcoming colloidal nanoparticle aggregation in biological milieu for cancer therapeutic delivery: Perspectives of materials and particle design. Advances in colloid and interface science, 325, 103094. [CrossRef]
- Jiang, Z., Xiao, W., & Fu, Q. (2023). Stimuli responsive nanosonosensitizers for sonodynamic therapy. Journal of Controlled Release, 361, 547-567. [CrossRef]
- Zhang, Z., Yuan, Y., Xue, Y., Zhang, W., Sun, X., Xu, X., & Liu, C. (2024). Nanomaterials for ultrasound imaging-guided sonodynamic therapy. Technology in Cancer Research & Treatment, 23, 15330338241263197. [CrossRef]
- Ang, M. J. Y., Chan, S. Y., Goh, Y. Y., Luo, Z., Lau, J. W., & Liu, X. (2021). Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Advanced Drug Delivery Reviews, 178, 113907. [CrossRef]
- Huang, J., Liu, F., Han, X., Zhang, L., Hu, Z., Jiang, Q., ... & Li, P. (2018). Nanosonosensitizers for highly efficient sonodynamic cancer theranostics. Theranostics, 8(22), 6178. [CrossRef]
- Yang, Y., Fan, Z., Zheng, K., Shi, D., Su, G., Ge, D., ... & Hou, Z. (2021). A novel self-targeting theranostic nanoplatform for photoacoustic imaging-monitored and enhanced chemo-sonodynamic therapy. Journal of Materials Chemistry B, 9(27), 5547-5559. [CrossRef]
- Jiang, Q., Xu, H., Zhang, W., Wang, Y., Xia, J., & Chen, Z. (2023). Mn (ii)–hemoporfin-based metal–organic frameworks as a theranostic nanoplatform for MRI-guided sonodynamic therapy. Biomaterials Science, 11(24), 7838-7844. [CrossRef]
- Ma, J., Mei, W., Hu, H., Xu, Z., & Xu, Q. (2025). Enhanced sonodynamic therapy and theranostic integration for breast cancer treatment: nanomaterial-driven multifunctional platforms. Journal of Materials Chemistry B, 13(45), 14639-14659. [CrossRef]
- Xu, M., Zhou, L., Zheng, L., Zhou, Q., Liu, K., Mao, Y., & Song, S. (2021). Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer letters, 497, 229-242. [CrossRef]
- Feng, Z., Wang, Z., Xiang, X., Wang, L., Du, F., Xiao, X., ... & Qiu, L. (2024). Progress in nanomedicine for sonodynamic immunotherapy of tumors. EngMedicine, 1(2), 100027. [CrossRef]
- Tang, J., Chen, Y., Lai, H., Zeng, Q., Li, Y., Feng, J., ... & Liang, Z. (2025). Innovative immunosonogen nanoplatform combining sonodynamic oxygenation and immunomodulation for superior cancer therapy. Chemical Engineering Journal, 163582. [CrossRef]
- Wang, Z., Yu, N., Zhang, J., Ren, Q., Li, M., & Chen, Z. (2022). Nanoscale Hf-hematoporphyrin frameworks for synergetic sonodynamic/radiation therapy of deep-seated tumors. Journal of colloid and interface science, 626, 803-814. [CrossRef]
- Li, G., Zhang, Y., & Li, J. (2023). A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy. Ultrasonics Sonochemistry, 92, 106262. [CrossRef]
- Pan, Y., Fang, L., Gu, S., Chen, L., Wu, C., Xue, S., ... & Liu, C. (2025). Carbon dot decorated covalent organic framework for mild NIR-II photothermal and heterojunction amplified sonodynamic and chemodynamic therapy. Carbon, 236, 119987. [CrossRef]
- Hu, C., Hou, B., & Xie, S. (2022). Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC advances, 12(35), 22722-22747. [CrossRef]
- Zhou, Y., Gao, Y., Yao, N., Lu, G., Dong, C., Wang, K., ... & Li, X. (2024). Multi-modal triggered-release sonodynamic/chemo/phototherapy synergistic nanocarriers for the treatment of colon cancer. Frontiers in Bioengineering and Biotechnology, 12, 1439883. [CrossRef]
- Wu, M., Zhang, Z., Li, D., Ruan, X., Yang, J., Chen, S., ... & Ling, W. (2025). Integrating oxygen-boosted sonodynamic therapy and ferroptosis via engineered exosomes for effective cancer treatment. Theranostics, 15(1), 68. [CrossRef]
- Liang, Y., Zhang, M., Zhang, Y., & Zhang, M. (2023). Ultrasound sonosensitizers for tumor sonodynamic therapy and imaging: a new direction with clinical translation. Molecules, 28(18), 6484.
- Xu, Y., Tan, W., Chen, M., Chen, S., Tang, K., Liao, H., & Niu, C. (2022). MnO2 coated multi-layer nanoplatform for enhanced sonodynamic therapy and MR imaging of breast cancer. Frontiers in Bioengineering and Biotechnology, 10, 955127. [CrossRef]
- Yang, T., Lou, Y., & Ying, Z. P. (2025). Nanoparticle-Ultrasound Synergy: An Emerging Theranostic Paradigm for Breast and Gynecologic Cancers. Frontiers in Medical Technology, 7, 1617939. [CrossRef]
- Omidian, H., & Gill, E. J. (2025). Multifunctional Nanoplatforms Bridging Diagnostics and Therapeutics in Cancer. Micromachines, 16(12), 1323. [CrossRef]
- Li, Y., Tao, T., Xiong, Y., Guo, W., & Liang, Y. (2025). Multifunctional PLGA nanosystems: enabling integrated diagnostic and therapeutic strategies. Frontiers in Pharmacology, 16, 1670397. [CrossRef]
- Biglari, N., Ghomi, M., Zare, E. N., Mahmoudi, E., Shen, J., & Makvandi, P. (2026). Toward multifunctional nanoplatforms based on layered double hydroxides (LDHs) for cancer therapy: From structural design to application. Bioactive Materials, 55, 602-622. [CrossRef]
- Yamaguchi, T., Kitahara, S., Kusuda, K., Okamoto, J., Horise, Y., Masamune, K., & Muragaki, Y. (2021). Current landscape of sonodynamic therapy for treating cancer. Cancers, 13(24), 6184. [CrossRef]
- Wang, C., Tian, Y., Wu, B., & Cheng, W. (2022). Recent progress toward imaging application of multifunction sonosensitizers in sonodynamic therapy. International Journal of Nanomedicine, 17, 3511. [CrossRef]
- Yumita, N., Iwase, Y., Nishi, K., Komatsu, H., Takeda, K., Onodera, K., ... & Momose, Y. (2012). Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics, 2(9), 880. [CrossRef]
- Wang, T., Peng, W., Du, M., & Chen, Z. (2023). Immunogenic sonodynamic therapy for inducing immunogenic cell death and activating antitumor immunity. Frontiers in Oncology, 13, 1167105. [CrossRef]
- Wang, G., Qi, Y., Liu, Z., & Wang, R. (2025). Emerging piezoelectric sonosensitizer for ROS-Driven sonodynamic Cancer therapy. Inorganics, 13(3), 71. [CrossRef]
- Wang, M., Zhang, Y., Cai, C., Tu, J., Guo, X., & Zhang, D. (2018). Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters. Scientific reports, 8(1), 3885. [CrossRef]
- Mizrahi, N., Zhou, E. H., Lenormand, G., Krishnan, R., Weihs, D., Butler, J. P., ... & Kimmel, E. (2012). Low intensity ultrasound perturbs cytoskeleton dynamics. Soft matter, 8(8), 2438-2443. [CrossRef]
- Du, M., Li, Y., Zhang, Q., Zhang, J., Ouyang, S., & Chen, Z. (2022). The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. Progress in biophysics and molecular Biology, 174, 41-49. [CrossRef]
- Collis, J., Manasseh, R., Liovic, P., Tho, P., Ooi, A., Petkovic-Duran, K., & Zhu, Y. (2010). Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics, 50(2), 273-279. [CrossRef]
- Inserra, C., Regnault, G., Cleve, S., Mauger, C., & Blanc-Benon, P. (2021). Induction of microstreaming by nonspherical bubble oscillations in an acoustic levitation system. Journal of Visualized Experiments (JoVE), (171), e62044. [CrossRef]
- Lentacker, I., De Cock, I., Deckers, R., De Smedt, S. C., & Moonen, C. T. W. (2014). Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Advanced drug delivery reviews, 72, 49-64. [CrossRef]
- Kooiman, K., Roovers, S., Langeveld, S. A., Kleven, R. T., Dewitte, H., O'Reilly, M. A., ... & Holland, C. K. (2020). Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound in medicine & biology, 46(6), 1296-1325. [CrossRef]
- Feril, L. B., & Kondo, T. (2004). Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. Journal of radiation research, 45(4), 479-489.
- Paranjape, A. N., Chen, X., & Villanueva, F. S. (2025). Alteration of Essential Cell Function by Ultrasound-Targeted Microbubble Cavitation. Current Cardiology Reports, 27(1), 155. [CrossRef]
- Tan, Z. Q., Ooi, E. H., Chiew, Y. S., Foo, J. J., Ng, Y. K., & Ooi, E. T. (2024). Modelling the dynamics of microbubble undergoing stable and inertial cavitation: Delineating the effects of ultrasound and microbubble parameters on sonothrombolysis. Biocybernetics and Biomedical Engineering, 44(2), 358-368. [CrossRef]
- Wei, L., Liu, S., & Dong, F. (2024). Mechanism study of micro-jet generation induced by acoustic cavitation. Journal of Hydrodynamics, 36(6), 1104-1117. [CrossRef]
- Zhang, Y., Zhang, X., Zhang, S., Ying, J., Yang, Y., Wang, H., ... & Zhang, Y. (2023). A review of the dynamics progress of bubble collapse within droplet and droplet splash. Applied Sciences, 13(13), 7822. [CrossRef]
- Wang, C., Tao, R., Wu, J., Jiang, H., Hu, Z., Wang, B., & Yang, Y. (2025). Sonochemistry: Materials science and engineering applications. Coordination Chemistry Reviews, 526, 216373. [CrossRef]
- Qin, D., Lei, S., Chen, B., Li, Z., Wang, W., & Ji, X. (2023). Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases. Ultrasonics sonochemistry, 97, 106456. [CrossRef]
- Przystupski, D., & Ussowicz, M. (2022). Landscape of cellular bioeffects triggered by ultrasound-induced sonoporation. International journal of molecular sciences, 23(19), 11222. [CrossRef]
- Liu, C., Liu, X., Zha, L., Zhang, Y., Ouyang, R., Sun, D., & Miao, Y. (2025). Recent exploration of inorganic sonosensitizers for sonodynamic therapy of tumors. RSC advances, 15(25), 19762-19785. [CrossRef]
- Yasui, K. (2022). Production of O radicals from cavitation bubbles under ultrasound. Molecules, 27(15), 4788. [CrossRef]
- Liu, X., Pan, X., Wang, C., & Liu, H. (2023). Modulation of reactive oxygen species to enhance sonodynamic therapy. Particuology, 75, 199-216. [CrossRef]
- Zheng, Y., Wang, J., Chen, H., & Gao, Y. (2024). Exploring Different Ultrasonic Parameters and Treatment Conditions to Optimize In Vitro Sonodynamic Therapeutic Effects in Cancer Cells. Cell Biochemistry and Biophysics, 82(1), 303-314. [CrossRef]
- Tsurunishi, T., Furui, Y., & Kawasaki, H. (2025). Ultrasonic Activation of Au Nanoclusters/TiO2: Tuning Hydroxyl Radical Production Through Frequency and Nanocluster Size. Molecules, 30(3), 541. [CrossRef]
- Suslick, K. S. (1990). Sonochemistry. science, 247(4949), 1439-1445.
- Suslick, K. S., & Flannigan, D. J. (2008). Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu. Rev. Phys. Chem., 59(1), 659-683. [CrossRef]
- Peng, K., Tian, S., Zhang, Y., He, Q., & Wang, Q. (2022). Penetration of hydroxyl radicals in the aqueous phase surrounding a cavitation bubble. Ultrasonics Sonochemistry, 91, 106235. [CrossRef]
- Peng, K., Qin, F. G., Jiang, R., Qu, W., & Wang, Q. (2022). Production and dispersion of free radicals from transient cavitation Bubbles: An integrated numerical scheme and applications. Ultrasonics Sonochemistry, 88, 106067. [CrossRef]
- Wang, B., Wang, Y., Zhang, J., Hu, C., Jiang, J., Li, Y., & Peng, Z. (2023). ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Archives of toxicology, 97(6), 1439-1451. [CrossRef]
- Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2006). Mitochondrial ROS-induced ROS release: an update and review. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757(5-6), 509-517. [CrossRef]
- Canaparo, R., Foglietta, F., Barbero, N., & Serpe, L. (2022). The promising interplay between sonodynamic therapy and nanomedicine. Advanced drug delivery reviews, 189, 114495. [CrossRef]
- Cressey, P., Abd Shukor, S. B., & Thanou, M. (2025). Sonodynamic therapy: transforming sound into light for hard-to-treat tumours. Advanced Drug Delivery Reviews, 115696. [CrossRef]
- Datta, P., Moolayadukkam, S., Sahu, R. P., Ganguly, R., Sen, S., & Puri, I. K. (2024). Deciphering the hydrodynamics of lipid-coated microbubble sonoluminescence for sonodynamic therapy. Ultrasonics sonochemistry, 111, 107090. [CrossRef]
- Beguin, E., Shrivastava, S., Dezhkunov, N. V., McHale, A. P., Callan, J. F., & Stride, E. (2019). Direct evidence of multibubble sonoluminescence using therapeutic ultrasound and microbubbles. ACS applied materials & interfaces, 11(22), 19913-19919. [CrossRef]
- Pickworth, M. J. W., Dendy, P. P., Leighton, T. G., & Walton, A. J. (1988). Studies of the cavitational effects of clinical ultrasound by sonoluminescence: 2. Thresholds for sonoluminescence from a therapeutic ultrasound beam and the effect of temperature and duty cycle. Physics in Medicine & Biology, 33(11), 1249. [CrossRef]
- Chen, Z., Sang, L., Liu, Y., & Bai, Z. (2025). Sono-Piezo Dynamic Therapy: Utilizing Piezoelectric Materials as Sonosensitizer for Sonodynamic Therapy. Advanced Science, 12(12), 2417439. [CrossRef]
- Zhou, L., Dong, C., Ding, L., Feng, W., Yu, L., Cui, X., & Chen, Y. (2021). Targeting ferroptosis synergistically sensitizes apoptotic sonodynamic anti-tumor nanotherapy. Nano Today, 39, 101212. [CrossRef]
- Du, Y., Yang, J., & Fu, D. (2025). Research progress on the induction of immunogenic cell death in tumor immunotherapy using a sonodynamic therapy nanoparticle delivery system. Frontiers in Immunology, 16, 1681773. [CrossRef]
- Zhou, Y., Jiao, J., Yang, R., Wen, B., Wu, Q., Xu, L., ... & Yan, H. (2023). Temozolomide-based sonodynamic therapy induces immunogenic cell death in glioma. Clinical Immunology, 256, 109772. [CrossRef]
- Martins, I., Wang, Y., Michaud, M., Ma, Y., Sukkurwala, A. Q., Shen, S., ... & Kroemer, G. (2014). Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death & Differentiation, 21(1), 79-91. [CrossRef]
- Yang, Y., Cheng, Y., & Cheng, L. (2024). The emergence of cancer sono-immunotherapy. Trends in Immunology, 45(7), 549-563.
- Cheng, D., Wang, X., Zhou, X., & Li, J. (2021). Nanosonosensitizers with ultrasound-induced reactive oxygen species generation for cancer sonodynamic immunotherapy. Frontiers in Bioengineering and Biotechnology, 9, 761218. [CrossRef]
- Sun, S., Tang, Q., Sun, L., Zhang, J., Zhang, L., Xu, M., ... & Liang, X. (2022). Ultrasound-mediated immune regulation in tumor immunotherapy. Materials Today Advances, 14, 100248. [CrossRef]
- Wang, X., Xu, X., Yang, Z., Xu, X., Han, S., & Zhang, H. (2023). Improvement of the effectiveness of sonodynamic therapy: by optimizing components and combination with other treatments. Biomaterials Science, 11(23), 7489-7511. [CrossRef]
- Gong, Z., Hou, D., Xu, Y., Wang, M., Lin, S., Zheng, Y., & Dai, Z. (2025). Enhancing SDT Efficacy of Doxorubicin-Loaded Sonosensitizer Micelles to Overcome Resistance of Cancer Therapy by Optimizing Acoustic Parameters. Aggregate, 6(5), e70005. [CrossRef]
- Martins, Y. A., Pavan, T. Z., & Lopez, R. F. V. (2021). Sonodynamic therapy: Ultrasound parameters and in vitro experimental configurations. International Journal of Pharmaceutics, 610, 121243. [CrossRef]
- Li, R., Wang, X., Shi, J., Kang, Y., & Ji, X. (2023). Sonocatalytic cancer therapy: theories, advanced catalysts and system design. Nanoscale, 15(48), 19407-19422. [CrossRef]
- Shan, Q., Li, R., Ying, B., Zhu, W., Wu, X., Xu, S., ... & Chen, J. (2025). Organic Sonosensitizers-based SDT with enhanced ROS generation. Ultrasonics Sonochemistry, 107625. [CrossRef]
- Hwang, E., Yun, M., & Jung, H. S. (2023). Mitochondria-targeted organic sonodynamic therapy agents: concept, benefits, and future directions. Frontiers in Chemistry, 11, 1212193. [CrossRef]
- Xing, X., Zhao, S., Xu, T., Huang, L., Zhang, Y., Lan, M., ... & Wang, P. (2021). Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coordination Chemistry Reviews, 445, 214087. [CrossRef]
- Liu, Y., Wang, L., Wei, F., Tian, Y., Mou, J., Yang, S., & Wu, H. (2023). Modulation of hypoxia and redox in the solid tumor microenvironment with a catalytic nanoplatform to enhance combinational chemodynamic/sonodynamic therapy. Biomaterials Science, 11(5), 1739-1753. [CrossRef]
- Wang, X., Li, M., Cheng, R., Zhao, L., Xi, Y., Wang, J., ... & Sang, S. (2025). Nuclear-targeted reactive oxygen species burst: a self-amplifying nanoplatform that overcomes hypoxia and redox barriers for enhanced sonodynamic cancer therapy. Bio-Design and Manufacturing, 8(5), 776-799. [CrossRef]
- Zheng, N., Li, D., Hu, X., Yan, L., Ding, L. Y., Feng, J., ... & Hu, J. (2025). Enhanced Sonodynamic Cancer Therapy through Boosting Reactive Oxygen Species and Depleting Glutathione. Nano Letters, 25(14), 5908-5915. [CrossRef]
- Wei, P., Chen, S., Shi, J., & Du, J. (2023). Oxygen-generating polymer vesicles for enhanced sonodynamic tumor therapy. Journal of Controlled Release, 353, 975-987. [CrossRef]
- Zhang, M., Wang, X., Zhang, C., Sun, D., Wu, Z., Yang, D., ... & Jing, X. (2025). A versatile nanoplatform for enhanced sonodynamic therapy via hypoxia alleviation, glutathione depletion, and calcium overload. Journal of Materials Chemistry B, 13(31), 9559-9575. [CrossRef]
- Huang, B., Chen, S., Pei, W., Xu, Y., Jiang, Z., Niu, C., & Wang, L. (2020). Oxygen-sufficient nanoplatform for chemo-sonodynamic therapy of hypoxic tumors. Frontiers in Chemistry, 8, 358. [CrossRef]
- Li, Y., Chen, W., Kang, Y., Zhen, X., Zhou, Z., Liu, C., ... & Tao, W. (2023). Nanosensitizer-mediated augmentation of sonodynamic therapy efficacy and antitumor immunity. Nature communications, 14(1), 6973. [CrossRef]
- Xu, C., Sun, Y., Yu, Y., Hu, M., Yang, C., & Zhang, Z. (2019). A sequentially responsive and structure-transformable nanoparticle with a comprehensively improved ‘CAPIR cascade’for enhanced antitumor effect. Nanoscale, 11(3), 1177-1194. [CrossRef]
- Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature biotechnology, 33(9), 941-951. [CrossRef]
- Li, X., Hu, Y., Zhang, X., Shi, X., Parak, W. J., & Pich, A. (2024). Transvascular transport of nanocarriers for tumor delivery. Nature Communications, 15(1), 8172. [CrossRef]
- Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., ... & Stauber, R. H. (2013). Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology, 8(10), 772-781. [CrossRef]
- Cedervall, T., Lynch, I., Lindman, S., Berggård, T., Thulin, E., Nilsson, H., ... & Linse, S. (2007). Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences, 104(7), 2050-2055. [CrossRef]
- Monopoli, M. P., Åberg, C., Salvati, A., & Dawson, K. A. (2012). Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology, 7(12). [CrossRef]
- Walkey, C. D., & Chan, W. C. (2012). Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chemical Society Reviews, 41(7), 2780-2799. [CrossRef]
- Gebauer, J. S., Malissek, M., Simon, S., Knauer, S. K., Maskos, M., Stauber, R. H., ... & Treuel, L. (2012). Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir, 28(25), 9673-9679. [CrossRef]
- Bashiri, G., Padilla, M. S., Swingle, K. L., Shepherd, S. J., Mitchell, M. J., & Wang, K. (2023). Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab on a Chip, 23(6), 1432-1466. [CrossRef]
- Salvati, A., Pitek, A. S., Monopoli, M. P., Prapainop, K., Bombelli, F. B., Hristov, D. R., ... & Dawson, K. A. (2013). Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature nanotechnology, 8(2), 137-143. [CrossRef]
- Stordy, B., Zhang, Y., Sepahi, Z., Khatami, M. H., Kim, P. M., & Chan, W. C. (2022). Conjugating ligands to an equilibrated nanoparticle protein corona enables cell targeting in serum. Chemistry of Materials, 34(15), 6868-6882. [CrossRef]
- Lesniak, A., Fenaroli, F., Monopoli, M. P., Åberg, C., Dawson, K. A., & Salvati, A. (2012). Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS nano, 6(7), 5845-5857. [CrossRef]
- Morbidelli, M., Papini, E., & Tavano, R. (2024). Essential protocols for decoding the composition and the functional effects of the nanoparticle protein corona. Frontiers in Nanotechnology, 6, 1500567. [CrossRef]
- Owens III, D. E., & Peppas, N. A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International journal of pharmaceutics, 307(1), 93-102.
- Yu, Q., Zhao, L., Guo, C., Yan, B., & Su, G. (2020). Regulating protein corona formation and dynamic protein exchange by controlling nanoparticle hydrophobicity. Frontiers in bioengineering and biotechnology, 8, 210. [CrossRef]
- Lee, H. (2024). Recent Advances in Simulation Studies on the Protein Corona. Pharmaceutics, 16(11), 1419. [CrossRef]
- Mayordomo, N. M., Zatarain-Beraza, A., Valerio, F., Álvarez-Méndez, V., Turegano, P., Herranz-García, L., ... & Fanarraga, M. L. (2025). The Protein Corona Paradox: Challenges in Achieving True Biomimetics in Nanomedicines. Biomimetics, 10(5), 276. [CrossRef]
- Li, J., Hu, Z., Zhu, J., Lin, X., Gao, X., & Lv, G. (2023). Antitumor effects of pegylated zinc protoporphyrin-mediated sonodynamic therapy in ovarian cancer. Pharmaceutics, 15(9), 2275. [CrossRef]
- King, B. M., & Fiegel, J. (2022). Zwitterionic polymer coatings enhance gold nanoparticle stability and uptake in various biological environments. The AAPS journal, 24(1), 18. [CrossRef]
- Lucana, M. C., Pandey, S., Borrós, S., & Oller-Salvia, B. (2025). Development of simplified poly (β-aminoester)-zwitterion nanovehicles for controlled cancer cell transfection and enhanced gene delivery across a cell-based model of the blood-brain barrier. Drug Delivery and Translational Research, 1-13. [CrossRef]
- Li, C., Yang, X. Q., An, J., Cheng, K., Hou, X. L., Zhang, X. S., ... & Zhao, Y. D. (2020). Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics, 10(2), 867. [CrossRef]
- Zhang, L., Yin, T., Zhang, B., Yan, C., Lu, C., Liu, L., ... & Cai, L. (2022). Cancer-macrophage hybrid membrane-camouflaged photochlor for enhanced sonodynamic therapy against triple-negative breast cancer. Nano Research, 15(5), 4224-4232. [CrossRef]
- Guo, W., Wang, T., Huang, C., Ning, S., Guo, Q., Zhang, W., ... & Wang, X. (2023). Platelet membrane-coated C-TiO2 hollow nanospheres for combined sonodynamic and alkyl-radical cancer therapy. Nano Research, 16(1), 782-791. [CrossRef]
- Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 46(12_Part_1), 6387-6392.
- Nguyen, L. N., Ngo, W., Lin, Z. P., Sindhwani, S., MacMillan, P., Mladjenovic, S. M., & Chan, W. C. (2024). The mechanisms of nanoparticle delivery to solid tumours. Nature Reviews Bioengineering, 2(3), 201-213. [CrossRef]
- Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., & Jain, R. K. (1998). Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proceedings of the National Academy of Sciences, 95(8), 4607-4612.
- Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature reviews Clinical oncology, 7(11), 653-664. [CrossRef]
- Sindhwani, S., Syed, A. M., Ngai, J., Kingston, B. R., Maiorino, L., Rothschild, J., ... & Chan, W. C. (2020). The entry of nanoparticles into solid tumours. Nature materials, 19(5), 566-575. [CrossRef]
- Zhou, Q., Li, J., Xiang, J., Shao, S., Zhou, Z., Tang, J., & Shen, Y. (2022). Transcytosis-enabled active extravasation of tumor nanomedicine. Advanced Drug Delivery Reviews, 189, 114480. [CrossRef]
- Izadifar, Z., Babyn, P., & Chapman, D. (2019). Ultrasound cavitation/microbubble detection and medical applications. Journal of Medical and Biological Engineering, 39(3), 259-276. [CrossRef]
- Quarato, C. M. I., Lacedonia, D., Salvemini, M., Tuccari, G., Mastrodonato, G., Villani, R., ... & Sperandeo, M. (2023). A review on biological effects of ultrasounds: key messages for clinicians. Diagnostics, 13(5), 855. [CrossRef]
- Foroozandeh, P., & Aziz, A. A. (2018). Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale research letters, 13(1), 339. [CrossRef]
- Desai, N., Rana, D., Salave, S., Benival, D., Khunt, D., & Prajapati, B. G. (2024). Achieving endo/lysosomal escape using smart nanosystems for efficient cellular delivery. Molecules, 29(13), 3131. [CrossRef]
- Nakamura, H., & Watano, S. (2018). Direct permeation of nanoparticles across cell membrane: a review. KONA Powder and Particle Journal, 35, 49-65. [CrossRef]
- Lin, J., Miao, L., Zhong, G., Lin, C. H., Dargazangy, R., & Alexander-Katz, A. (2020). Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways. Communications biology, 3(1), 205. [CrossRef]
- Li, Y., Han, W., Gong, D., Luo, T., Fan, Y., Mao, J., ... & Lin, W. (2023). A self-assembled nanophotosensitizer targets lysosomes and induces lysosomal membrane permeabilization to enhance photodynamic therapy. Chemical Science, 14(19), 5106-5115. [CrossRef]
- Pang, E., Xing, X., Zhao, S., Tan, Q., Pan, T., Yu, T., ... & Lan, M. (2023). Lysosome-and plasma membrane-accumulative and tumor-targetable polythiophene nanoparticles for enhanced sonodynamic therapy. Journal of Materials Chemistry B, 11(26), 6123-6130. [CrossRef]
- Yuan, H., Ma, J., Huang, W., Gong, P., Shi, F., Xu, X., ... & Wang, J. (2023). Antitumor effects of a distinct sonodynamic nanosystem through enhanced induction of immunogenic cell death and ferroptosis with modulation of tumor microenvironment. JACS Au, 3(5), 1507-1520. [CrossRef]
- Contri, R. V., Gazzi, R. P., Pohlmann, A. R., Guterres, S. S., & Frank, L. A. (2022). Drug release from pharmaceutical nanocarriers. In The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics (pp. 419-428). Cham: Springer International Publishing.
- Zhdanov, V. P. (2023). Release of molecules from nanocarriers. Physical Chemistry Chemical Physics, 25(42), 28955-28964.
- Scherphof, G. L., Maruyama, K., van Borssum Waalkes, M., Hoekstra, D., Damen, J., Kennel, S. J., & Huang, L. (1992). Lipid flow phenomena between liposomes, lipoproteins and cell membranes; Applications in drug delivery. In Liposome Dermatics: Griesbach Conference (pp. 11-19). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Zhang, Q., Kuang, G., Li, W., Wang, J., Ren, H., & Zhao, Y. (2023). Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Letters, 15(1), 44. [CrossRef]
- Wang, Q., Cui, H., Gan, N., Ma, X., Ren, W., & Wu, A. (2022). Recent advances in matrix metalloproteinases-responsive nanoprobes for cancer diagnosis and therapy. Reviews in Analytical Chemistry, 41(1), 198-216. [CrossRef]
- Al Refaai, K. A., AlSawaftah, N. A., Abuwatfa, W., & Husseini, G. A. (2024). Drug release via ultrasound-activated nanocarriers for cancer treatment: a review. Pharmaceutics, 16(11), 1383. [CrossRef]
- Wilson, M. G., Parikh, A., Dara, A., Beaver, A. S., & Kubanek, J. (2024). Targeted drug release from stable and safe ultrasound-sensitive nanocarriers. Frontiers in Molecular Biosciences, 11, 1408767. [CrossRef]
- Cao, Y., Chen, Y., Yu, T., Guo, Y., Liu, F., Yao, Y., ... & Ran, H. (2018). Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics, 8(5), 1327. [CrossRef]
- Wei, P., Cornel, E. J., & Du, J. (2021). Ultrasound-responsive polymer-based drug delivery systems. Drug delivery and translational research, 11(4), 1323-1339. [CrossRef]
- Yang, S., Hu, T., Williams, G. R., Yang, Y., Zhang, S., Shen, J., ... & Lyu, L. (2024). Boosting the sonodynamic performance of CoBiMn-layered double hydroxide nanoparticles via tumor microenvironment regulation for ultrasound imaging-guided sonodynamic therapy. Journal of Nanobiotechnology, 22(1), 317. [CrossRef]
- Jeong, Y. G., Park, J. H., & Khang, D. (2024). Sonodynamic and acoustically responsive nanodrug delivery system: cancer application. International journal of nanomedicine, 11767-11788. [CrossRef]
- Cong, X., Zhang, Z., Li, H., Yang, Y. G., Zhang, Y., & Sun, T. (2024). Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. Journal of Nanobiotechnology, 22(1), 620. [CrossRef]
- Zhao, G., Yu, Q., Li, M., Lu, G., Li, H., Wei, L., ... & Lu, M. (2025). De-aggregation of sonosensitizers enhances bactericidal activity in sonodynamic therapy of deep-seated bacterial osteomyelitis. Chemical Engineering Journal, 164431. [CrossRef]
- Wu, L., Zhu, Y., Liu, X., Hu, Q., Jing, Y., Song, J., & Nong, W. (2025). Hyaluronic acid coated GSH-responsive Mn (III)-pMOF-based nanosonosensitizers for cascade-catalytic enhancement of sonodynamic therapy against hepatocellular carcinoma. International Journal of Biological Macromolecules, 145269. [CrossRef]
- Sun, Y., Luo, K., Zhu, X., Chen, M., Sun, Y., Wang, H., ... & Zhao, Y. (2025). Cyclodextrin polyrotaxane based self oxygen supplying nanoparticles for enhancing the sonodynamic therapy mammary cancer performance with a “one-stone-two-birds” strategy. Carbohydrate Polymers, 124439. [CrossRef]
- Zhao, W., Fu, C., Gao, H., Zhou, Y., Yan, C., Yin, Y., ... & Tang, B. Z. (2023). A high performance AIE-active sonosensitizer for efficient sonodynamic tumor therapy. Materials Chemistry Frontiers, 7(24), 6229-6235. [CrossRef]
- Padilla, F., Brenner, J., Prada, F., & Klibanov, A. L. (2023). Theranostics in the vasculature: bioeffects of ultrasound and microbubbles to induce vascular shutdown. Theranostics, 13(12), 4079. [CrossRef]
- Hu, Q., Zhang, Y., Fu, L., Xi, Y., Ye, L., Yang, X., ... & Zhai, G. (2024). Progress and preclinical application status of ultrasound microbubbles. Journal of Drug Delivery Science and Technology, 92, 105312. [CrossRef]
- Bismuth, M., Eck, M., & Ilovitsh, T. (2023). Nanobubble-mediated cancer cell sonoporation using low-frequency ultrasound. Nanoscale, 15(44), 17899-17909. [CrossRef]
- Omata, D., Munakata, L., Maruyama, K., & Suzuki, R. (2021). Enhanced vascular permeability by microbubbles and ultrasound in drug delivery. Biological and Pharmaceutical Bulletin, 44(10), 1391-1398. [CrossRef]
- Holman, R., & McDannold, N. (2025). Identifying new therapeutics for focused ultrasound-enhanced drug delivery in the management of glioblastoma. Frontiers in Oncology, 15, 1507940.
- Chen, L., Liu, J., Chen, Q., Li, Y., He, Y., Jin, H., ... & Hu, Z. (2025). Modulating tumor interstitial fluid pressure using ultrasound and microbubble therapy: a preclinical study for enhanced drug delivery in cancer treatment. BMC cancer. [CrossRef]
- Shakya, G., Cattaneo, M., Guerriero, G., Prasanna, A., Fiorini, S., & Supponen, O. (2024). Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Advanced drug delivery reviews, 206, 115178. [CrossRef]
- Chapla, R., Huynh, K. T., & Schutt, C. E. (2022). Microbubble–nanoparticle complexes for ultrasound-enhanced cargo delivery. Pharmaceutics, 14(11), 2396. [CrossRef]
- van Elburg, B., Deprez, J., van den Broek, M., De Smedt, S. C., Versluis, M., Lajoinie, G., ... & Segers, T. (2023). Dependence of sonoporation efficiency on microbubble size: An in vitro monodisperse microbubble study. Journal of Controlled Release, 363, 747-755. [CrossRef]
- Feng, Z., Yao, Y., Wang, Z., Xiang, X., Wang, L., Xiao, X., ... & Qian, Z. (2026). A multimodal imaging nanobubble enhancing sonodynamic therapy by cell membrane disruption for effective anti-melanoma. Biomaterials, 324, 123450. [CrossRef]
- Meijlink, B., van der Kooij, H. R., Wang, Y., Li, H., Huveneers, S., & Kooiman, K. (2024). Ultrasound-activated microbubbles mediate F-actin disruptions and endothelial gap formation during sonoporation. Journal of Controlled Release, 376, 1176-1189. [CrossRef]
- Yang, Y., Li, Q., Guo, X., Tu, J., & Zhang, D. (2020). Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrasonics Sonochemistry, 67, 105096. [CrossRef]
- Pan, M., Hu, D., Yuan, L., Yu, Y., Li, Y., & Qian, Z. (2023). Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharmaceutica Sinica B, 13(7), 2926-2954. [CrossRef]
- Ma, G., Cheng, K., Wang, X., Zeng, Y., Hu, C., He, L., ... & Huang, P. (2025). Dual oxygen supply system of carbon dot-loaded microbubbles with acoustic cavitation for enhanced sonodynamic therapy in diabetic wound healing. Biomaterials, 318, 123145. [CrossRef]
- Zhao, Y., Feng, Y., & Wu, L. (2025). Process, dynamics and bioeffects of acoustic droplet vaporization induced by dual-frequency focused ultrasound. Ultrasonics Sonochemistry, 113, 107234. [CrossRef]
- Dorvashi, M., Harrison, O. J., Sultan, H. H., Zhang, G., Thanou, M., Ghavami, N., ... & Harput, S. (2024). A meta-analysis of the effect of ultrasound activation parameters on phase-change nanodroplets in imaging and therapy. Frontiers in Acoustics, 2, 1483731. [CrossRef]
- Huang, T., Wu, W., Wu, J., Tan, Y., Zhang, M., Long, H., ... & Zhang, C. (2023). Perfluorocarbon nanodrug induced oxygen self-enriching sonodynamic therapy improves cancer immunotherapy after insufficient radiofrequency ablation. Frontiers in Immunology, 14, 1124152. [CrossRef]
- Tang, C., Tang, X., Tang, J., Hu, J., Wan, L., Chen, J., ... & Li, R. (2025). An oxygen-generating nanoplatform remodels the immunosuppressive tumor microenvironment via synergistic lactate depletion and sonodynamic therapy. Journal of Nanobiotechnology, 23(1), 458. [CrossRef]
- Zhao, M., Liu, H., & Jahr, J. S. (2024). Perfluorocarbon-based oxygen carriers: What is new in 2024?. Journal of Anesthesia and Translational Medicine, 3(1), 10-13. [CrossRef]
- Huang, D., Zhao, C., Wen, B., Fu, X., Shang, L., Kong, W., & Zhao, Y. (2022). Oxygen-carrying microfluidic microcapsules for enhancing chemo-sonodynamic therapy on patient-derived tumor organoid models. Chemical Engineering Journal, 435, 134871. [CrossRef]
- Gong, Q., Huo, L., Xiong, S., Han, Y., Zhao, X., Wen, L., ... & Liang, C. (2025). Engineering BSA-CAT-Ir nanoparticles for enhanced sonodynamic therapy via alleviating tumor hypoxia. Nanoscale Advances. [CrossRef]
- Liao, H., Chen, M., Liao, Z., Luo, Y., Chen, S., Wang, L., ... & Niu, C. (2025). MnO2-based nanoparticles remodeling tumor micro-environment to augment sonodynamic immunotherapy against breast cancer. Biomaterials Science, 13(10), 2767-2782. [CrossRef]
- Shen, Q., Zhu, X., Huo, M., Lin, Y., Zhang, W., Yang, M., ... & Gai, Y. (2025). A hollow nanozyme-based multifunctional platform enhances sonodynamic–chemodynamic-induced ferroptosis for cancer therapy. RSC advances, 15(12), 9408-9419. [CrossRef]
- Fan, Z., Ding, L., Zhu, F., Yang, N., Shi, Y., Sun, Q., ... & Hou, Z. (2025). Copper-coordinated engineered nanoreactors with self-amplifying O2 and cascade chem-drug synthesis for enhanced sonodynamic-mediated oncotherapy. Journal of Nanobiotechnology. [CrossRef]
- Barmin, R. A., Moosavifar, M., Dasgupta, A., Herrmann, A., Kiessling, F., Pallares, R. M., & Lammers, T. (2023). Polymeric materials for ultrasound imaging and therapy. Chemical Science, 14(43), 11941-11954. [CrossRef]
- Terlikowska, K. M., Dobrzycka, B., & Terlikowski, S. J. (2024). Modifications of nanobubble therapy for cancer treatment. International Journal of Molecular Sciences, 25(13), 7292. [CrossRef]
- Pang, E., Li, B., Zhou, C., Zhao, S., Tang, Y., Tan, Q., ... & Lan, M. (2023). Catalase-like pleated niobium carbide MXene loaded with polythiophene for oxygenated sonodynamic therapy in solid tumor. Nanoscale, 15(40), 16466-16471. [CrossRef]
- Chuzeville, L., Aissani, A., Manisekaran, A., Fleming, Y., Grysan, P., Contal, S., ... & Thomann, J. S. (2024). Size and phase preservation of amorphous calcium carbonate nanoparticles in aqueous media using different types of lignin for contrast-enhanced ultrasound imaging. Journal of Colloid and Interface Science, 658, 584-596. [CrossRef]
- Wu, Z., Liu, X., Guo, H., Huang, J., He, G., Chen, H., & Liu, X. (2024). Promoting ultrasonic cavitation via Negative-Curvature nanoparticles. Ultrasonics Sonochemistry, 107, 106924. [CrossRef]
- Xu, J., Pei, Z., Wang, Y., Jiang, N., Gong, Y., Gong, F., ... & Cheng, L. (2025). Bioactive microspheres to enhance sonodynamic-embolization-metalloimmune therapy for orthotopic liver cancer. Biomaterials, 317, 123063. [CrossRef]
- Du, M., Wang, T., Feng, R., Zeng, P., & Chen, Z. (2023). Establishment of ultrasound-responsive SonoBacteriaBot for targeted drug delivery and controlled release. Frontiers in bioengineering and biotechnology, 11, 1144963. [CrossRef]
- Zuo, T., Dewanjee, S., Zhang, C., Chakraborty, P., Lu, W., Jha, N. K., ... & Chen, Z. S. (2025). Biopiezoelectric-based nanomaterials; a promising strategy in cancer therapy. Journal of Experimental & Clinical Cancer Research, 44(1), 171. [CrossRef]
- Huang, H., Miao, Y., & Li, Y. (2025). Recent advances of piezoelectric materials used in sonodynamic therapy of tumor. Coordination Chemistry Reviews, 523, 216282. [CrossRef]
- Wang, J., Ma, J., Xie, F., Miao, F., Lv, L., Huang, Y., ... & Bao, L. (2024). Immunogenic cell death-based cancer vaccines: promising prospect in cancer therapy. Frontiers in Immunology, 15, 1389173. [CrossRef]
- Wei, M., Wang, X., Mo, Y., Kong, C., Zhang, M., Qiu, G., ... & Wu, F. (2024). Combined effects of Anti-PD-L1 and nanosonodynamic therapy on HCC immune activation in mice: an investigation. International Journal of Nanomedicine, 7215-7236. [CrossRef]
- Collins, V. G., Hutton, D., Hossain-Ibrahim, K., Joseph, J., & Banerjee, S. (2025). The abscopal effects of sonodynamic therapy in cancer. British Journal of Cancer, 132(5), 409-420. [CrossRef]
- Yuan, F., Peng, D., Lu, M., Zhang, K., Mi, P., & Xu, J. (2025). Ultrasound-responsive nanocarriers for cancer therapy: Physiochemical features-directed design. Journal of Controlled Release, 114353.
- Yu, Q., Zhou, Y., Zhang, Q., Li, J., Yan, S., Xu, J., ... & Sun, Y. (2025). NIR-II imaging guided on-site size variable clustered nanosystem to potentiate sonodynamic therapy in deep-seated tumors. Biomaterials, 123381. [CrossRef]
- Zhao, P., Deng, Y., Xiang, G., & Liu, Y. (2021). Nanoparticle-assisted sonosensitizers and their biomedical applications. International journal of nanomedicine, 4615-4630. [CrossRef]
- Dasgupta, A., Sofias, A. M., Kiessling, F., & Lammers, T. (2024). Nanoparticle delivery to tumours: from EPR and ATR mechanisms to clinical impact. Nature reviews bioengineering, 2(9), 714-716. [CrossRef]
- Kim, J., Cho, H., Lim, D. K., Joo, M. K., & Kim, K. (2023). Perspectives for improving the tumor targeting of nanomedicine via the EPR effect in clinical tumors. International journal of molecular sciences, 24(12), 10082. [CrossRef]
- Deng, X., Zhang, Z., Ren, T., & Chen, L. (2025). Regulation of oxidative stress and inflammation caused by drug accumulation in the TME based on EPR-passive strategy and active targeting. Cancer Nanotechnology, 16(1), 40. [CrossRef]
- Kashkooli, F. M., Jakhmola, A., Hornsby, T. K., Tavakkoli, J. J., & Kolios, M. C. (2023). Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. Journal of Controlled Release, 355, 552-578. [CrossRef]
- Hong, L., Li, W., Li, Y., & Yin, S. (2023). Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC advances, 13(31), 21365-21382. [CrossRef]
- Al Jayoush, A. R., Haider, M., Khan, S. A., & Hussain, Z. (2025). Hyaluronic acid-functionalized nanomedicines for CD44-receptors-mediated targeted cancer therapy: A review of selective targetability and biodistribution to tumor microenvironment. International Journal of Biological Macromolecules, 142486. [CrossRef]
- Spada, A., & Gerber-Lemaire, S. (2025). Surface functionalization of nanocarriers with anti-EGFR ligands for cancer active targeting. Nanomaterials, 15(3), 158. [CrossRef]
- Bogdanović, B., Fagret, D., Ghezzi, C., & Montemagno, C. (2024). Integrin targeting and beyond: enhancing cancer treatment with dual-targeting RGD (arginine–glycine–aspartate) strategies. Pharmaceuticals, 17(11), 1556. [CrossRef]
- Yang, H., Li, R., Jin, S., Tian, Y., Wang, C., Sun, Y., ... & Cheng, W. (2025). Targeted Nanosensitizer-Augmented Sono-Immunotherapy with STING Agonist to Remodel the Immune Microenvironment in Hepatocellular Carcinoma. Acta Biomaterialia. [CrossRef]
- Yang, J., Luo, Z., Ma, J., Wang, Y., & Cheng, N. (2024). A next-generation STING agonist MSA-2: From mechanism to application. Journal of Controlled Release, 371, 273-287. [CrossRef]
- Jia, Y., Jia, W., Tang, Z., Wu, Y., Yang, W., Ye, W., ... & Yu, M. (2025). Dual-Locked Polymeric STING Nano-Agonist/Sonosensitizer Augments Spatiotemporally Controlled Cancer Sono-Immunotherapy. Angewandte Chemie International Edition, 64(44), e202514516. [CrossRef]
- Zhang, Y., Zhang, X., Li, H., Liu, J., Wei, W., & Gao, J. (2022). Membrane-coated biomimetic nanoparticles: a state-of-the-art multifunctional weapon for tumor immunotherapy. Membranes, 12(8), 738. [CrossRef]
- Coradduzza, D., Vecciu, B., Cadoni, M. P. L., Azara, E. G., Carru, C., & Medici, S. (2026). Platelet-derived membranes as biomimetic interfaces for engineering functional nanocarriers in targeted drug delivery and diagnostics: a systematic review. Biomaterials Science. [CrossRef]
- Guo, Q., Wang, S., Xu, R., Tang, Y., & Xia, X. (2024). Cancer cell membrane-coated nanoparticles: a promising anti-tumor bionic platform. RSC advances, 14(15), 10608-10637. [CrossRef]
- Zhu, L., Yu, X., Cao, T., Deng, H., Tang, X., Lin, Q., & Zhou, Q. (2023). Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharmaceutica Sinica B, 13(6), 2464-2482. [CrossRef]
- Zou, S., Zhang, Y., Mao, S., Yuan, M., & Yang, J. (2025). Sonodynamic and magnetic targeting platelet-membrane biomimetic platform for glioblastoma therapy. Frontiers in Bioengineering and Biotechnology, 13, 1648167. [CrossRef]
- Cao, T. G. N., Hoang, Q. T., Hong, E. J., Kang, S. J., Kang, J. H., Ravichandran, V., ... & Shim, M. S. (2023). Mitochondria-targeting sonosensitizer-loaded extracellular vesicles for chemo-sonodynamic therapy. Journal of Controlled Release, 354, 651-663. [CrossRef]
- Cao, T. G. N., Hoang, Q. T., Kang, J. H., Kang, S. J., Ravichandran, V., Rhee, W. J., ... & Shim, M. S. (2023). Bioreducible exosomes encapsulating glycolysis inhibitors potentiate mitochondria-targeted sonodynamic cancer therapy via cancer-targeted drug release and cellular energy depletion. Biomaterials, 301, 122242. [CrossRef]
- Chen, J., Duan, Z., Zhan, Q., Li, Q., Qu, J., & Liu, R. (2024). Nucleus-Targeted Sonosensitizer Activates the cGAS-STING Pathway for Tumor Sonodynamic Immunotherapy. ACS Applied Bio Materials, 7(11), 7183-7193. [CrossRef]
- Wan, G., Chen, X., Wang, H., Hou, S., Wang, Q., Cheng, Y., ... & Zhang, Q. (2021). Gene augmented nuclear-targeting sonodynamic therapy via Nrf2 pathway-based redox balance adjustment boosts peptide-based anti-PD-L1 therapy on colorectal cancer. Journal of Nanobiotechnology, 19(1), 347. [CrossRef]
- Zhang, T., Sun, Y., Cao, J., Luo, J., Wang, J., Jiang, Z., & Huang, P. (2021). Intrinsic nucleus-targeted ultra-small metal–organic framework for the type I sonodynamic treatment of orthotopic pancreatic carcinoma. Journal of Nanobiotechnology, 19(1), 315. [CrossRef]
- Hu, H., Yan, J., Zhu, H., Wang, X., Zhao, Y., Li, S., ... & Zhang, G. (2024). Self-delivered sonodynamic nanomedicine for enhanced tumor immunotherapy by simultaneously reversing the immunosuppression and immune resistance. Chemical Engineering Journal, 501, 157580. [CrossRef]
- Xu, M., Hu, Y., Wu, J., Liu, J., & Pu, K. (2024). Sonodynamic nano-LYTACs reverse tumor immunosuppressive microenvironment for cancer immunotherapy. Journal of the American Chemical Society, 146(50), 34669-34680. [CrossRef]
- Li, P., Tan, X., Dan, Q., Hu, A., Hu, Z., Yang, X., ... & Zheng, T. (2024). MnO2/Ce6 microbubble-mediated hypoxia modulation for enhancing sono-photodynamic therapy against triple negative breast cancer. Biomaterials Science, 12(6), 1465-1476. [CrossRef]
- Xie, X., Zhang, J., Sun, L., Xu, S., Ma, S. S., Wang, H., ... & Liang, X. (2025). Ultrasound-triggered topical oxygen delivery enhances synergistic sonodynamic and antibody therapies against hypoxic gastric cancer. Journal of Controlled Release, 380, 736-750. [CrossRef]
- Zhang, W., Shi, Y., Abd Shukor, S., Vijayakumaran, A., Vlatakis, S., Wright, M., & Thanou, M. (2022). Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. Nanoscale, 14(8), 2943-2965. [CrossRef]
- Zhang, S., He, C., & Zhang, C. (2024). The progress and prospect of calcium peroxide nanoparticles in cancer therapy. Journal of Drug Delivery Science and Technology, 101, 106114. [CrossRef]
- Liao, H., Chen, M., Liao, Z., Luo, Y., Chen, S., Tan, W., ... & Niu, C. (2025). Sonodynamic therapy-boosted biomimetic nanoplatform targets ferroptosis and CD47 as vulnerabilities for cancer immunotherapy. Journal of Nanobiotechnology, 23(1), 432. [CrossRef]
- Chen, J., Zhan, Q., Li, L., Xi, S., Cai, L., Liu, R., & Chen, L. (2025). Cell-membrane targeting sonodynamic therapy combination with FSP1 inhibition for ferroptosis-boosted immunotherapy. Materials Today Bio, 30, 101407. [CrossRef]
- Tian, Y., Li, P., Wang, L., Ye, X., Qu, Z., Mou, J., ... & Wu, H. (2024). Glutathione-triggered release of SO2 gas to augment oxidative stress for enhanced chemodynamic and sonodynamic therapy. Biomaterials Science, 12(9), 2341-2355. [CrossRef]
- Lai, Y., Lu, N., Ouyang, A., Zhang, Q., & Zhang, P. (2022). Ferroptosis promotes sonodynamic therapy: a platinum (ii)–indocyanine sonosensitizer. Chemical science, 13(34), 9921-9926. [CrossRef]
- Zhang, X., Zhang, X., Yong, T., Gan, L., & Yang, X. (2024). Boosting antitumor efficacy of nanoparticles by modulating tumor mechanical microenvironment. EBioMedicine, 105. [CrossRef]
- Hu, Q., Zhu, Y., Mei, J., Liu, Y., & Zhou, G. (2025). Extracellular matrix dynamics in tumor immunoregulation: from tumor microenvironment to immunotherapy. Journal of Hematology & Oncology, 18(1), 65. [CrossRef]
- Du, W., Xia, X., Hu, F., & Yu, J. (2024). Extracellular matrix remodeling in the tumor immunity. Frontiers in Immunology, 14, 1340634. [CrossRef]
- Yin, X., Zhao, X., Shen, Y., Xie, W., He, C., Guo, J., ... & Fang, C. (2025). Nanoparticle-mediated dual targeting of stromal and immune components to overcome fibrotic and immunosuppressive barriers in hepatocellular carcinoma. Journal of Controlled Release, 113783. [CrossRef]
- Cassani, M., Fernandes, S., Pagliari, S., Cavalieri, F., Caruso, F., & Forte, G. (2025). Unraveling the role of the tumor extracellular matrix to inform nanoparticle design for nanomedicine. Advanced Science, 12(2), 2409898. [CrossRef]
- Gong, P., Wang, F., Hua, Y., Ying, J., Chen, J., & Qiao, Y. (2025). Collagenase-mediated extracellular matrix targeting for enhanced drug penetration and therapeutic efficacy in nanoscale delivery systems for cancer therapy. Journal of Nanobiotechnology, 23(1), 733. [CrossRef]
- Jiang, J., Zhang, M., Lyu, T., Chen, L., Wu, M., Li, R., ... & Zhen, X. (2023). Sono-Driven STING Activation using Semiconducting Polymeric Nanoagonists for Precision Sono-Immunotherapy of Head and Neck Squamous Cell Carcinoma. Advanced Materials, 35(30), 2300854. [CrossRef]
- Li, M., Li, Y., Zheng, J., Ma, Z., Zhang, J., Wu, H., ... & Nie, F. (2024). Ultrasound-responsive nanocarriers with siRNA and Fe3O4 regulate macrophage polarization and phagocytosis for augmented non-small cell lung cancer immunotherapy. Journal of Nanobiotechnology, 22(1), 605. [CrossRef]
- Yang, Y., Yan, F., & Shi, Z. (2024). Regulation of tumor microenvironment under malignant conditions: application of nMOFs in sonodynamic therapy. Chemical Research in Chinese Universities, 40(4), 611-626. [CrossRef]
- Qian, C., Zhao, G., Huo, M., Su, M., Hu, X., Liu, Q., & Wang, L. (2024). Tumor microenvironment-regulated drug delivery system combined with sonodynamic therapy for the synergistic treatment of breast cancer. RSC advances, 14(25), 17612-17626. [CrossRef]
- Sun, L., Li, Z., Lan, J., Wu, Y., Zhang, T., & Ding, Y. (2024). Better together: nanoscale co-delivery systems of therapeutic agents for high-performance cancer therapy. Frontiers in Pharmacology, 15, 1389922. [CrossRef]
- Zhang, Z., Tu, J., Kuang, X., Shi, M., Zhang, Y., Li, H., ... & Yuan, H. (2024). Bacterial outer membrane vesicle-modified metal–organic frameworks for sonodynamic therapy–immunotherapy of breast cancer. New Journal of Chemistry, 48(1), 367-376. [CrossRef]
- Hornsby, T. K., Kashkooli, F. M., Jakhmola, A., Kolios, M. C., & Tavakkoli, J. (2023). Kinetic modelling of ultrasound-triggered chemotherapeutic drug release from the surface of gold nanoparticles. Scientific Reports, 13(1), 21301. [CrossRef]
- Wang, K., Li, L., Liang, G., Xiao, H., Zhang, L., & Liu, T. (2025). Sonodynamic activated nanoparticles with Glut1 inhibitor and cystine-containing polymer stimulate disulfidptosis for improved immunotherapy in bladder cancer. Biomaterials, 319, 123178. [CrossRef]
- Hong, S., Kim, J., Chung, G., Lee, D., & Song, J. M. (2025). Revolutionizing drug delivery: low-intensity pulsed ultrasound (LIPUS)-driven deep penetration into hypoxic tumor microenvironments of cholangiocarcinoma. Theranostics, 15(1), 30. [CrossRef]
- Tang, N., Tang, J., Tang, J., Zhu, Q., Dong, X., Zhang, Y., ... & Liu, Z. (2023). Sononeoperfusion: a new therapeutic effect to enhance tumour blood perfusion using diagnostic ultrasound and microbubbles. Cancer Imaging, 23(1), 29. [CrossRef]
- Qiu, D., He, Y., Feng, Y., Lin, M., Lin, Z., Zhang, Z., ... & Liu, J. (2024). Tumor perfusion enhancement by microbubbles ultrasonic cavitation reduces tumor glycolysis metabolism and alleviate tumor acidosis. Frontiers in Oncology, 14, 1424824. [CrossRef]
- Fang, J., Xu, R., Cao, Y., Zhao, Z., Li, W., Lin, L., ... & Saw, P. E. (2025). Reduction-responsive RNAi nanoplatform for enhanced cancer sonoimmunotherapy via dual inhibition of mitophagy and Nrf2 pathways. Theranostics, 15(16), 7973. [CrossRef]
- Sun, N., Lei, Q., Wu, M., Gao, S., Yang, Z., Lv, X., ... & Cai, L. (2024). Metal-organic framework-mediated siRNA delivery and sonodynamic therapy for precisely triggering ferroptosis and augmenting ICD in osteosarcoma. Materials Today Bio, 26, 101053. [CrossRef]
- Wang, H., Liu, X., Yan, X., Fan, J., Li, D., Ren, J., & Qu, X. (2022). A MXene-derived redox homeostasis regulator perturbs the Nrf2 antioxidant program for reinforced sonodynamic therapy. Chemical Science, 13(22), 6704-6714. [CrossRef]
- Wang, G., Lu, H., Pan, Y., Qi, Y., & Huang, Y. (2024). Ultrasound-Sensitive Targeted Liposomes as a Gene Delivery System for the Synergistic Treatment of Hepatocellular Carcinoma. Small, 20(47), 2406182. [CrossRef]
- Glaviano, A., Foo, A. S., Lam, H. Y., Yap, K. C., Jacot, W., Jones, R. H., ... & Kumar, A. P. (2023). PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Molecular cancer, 22(1), 138. [CrossRef]
- Wang, M. Y., Deng, X. N., Dong, H., Feng, X. Y., Zhu, F. R., Yin, D., ... & Zhu, X. M. (2025). Enhancing the efficacy of sonodynamic therapy through modulation of autophagy. Ultrasonics Sonochemistry, 107527. [CrossRef]
- Chen, X., Xu, Z., Li, T., Thakur, A., Wen, Y., Zhang, K., ... & Yan, Y. (2024). Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomarker Research, 12(1), 2. [CrossRef]
- Fan, P., Zhang, N., Candi, E., Agostini, M., Piacentini, M., Centre, T. O. R., ... & Melino, G. (2023). Alleviating hypoxia to improve cancer immunotherapy. Oncogene, 42(49), 3591-3604. [CrossRef]
- Wang, J., Liu, Y., Cui, T., Yang, H., & Lin, L. (2024). Current progress in the regulation of endogenous molecules for enhanced chemodynamic therapy. Chemical Science, 15(26), 9915-9926. [CrossRef]
- Dinakaran, D., & Wilson, B. C. (2023). The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy. Frontiers in Bioengineering and Biotechnology, 11, 1250804. [CrossRef]
- Jung, H. S., & Kim, H. J. (2022). Definitive surgery and intraoperative photodynamic therapy for locally advanced non-small cell lung cancer: a case report. World Journal of Surgical Oncology, 20(1), 265. [CrossRef]
- Rodriguez, B., Rivera, D., Zhang, J. Y., Brown, C., Young, T., Williams, T., ... & Hadjpanayis, C. (2025). Innovations in intraoperative therapies in neurosurgical oncology: a narrative review. Journal of Neuro-Oncology, 171(3), 549-557. [CrossRef]
- Hu, H., Zhao, J., Ma, K., Wang, J., Wang, X., Mao, T., ... & Wang, S. (2023). Sonodynamic therapy combined with phototherapy: novel synergistic strategy with superior efficacy for antitumor and antiinfection therapy. Journal of Controlled Release, 359, 188-205. [CrossRef]
- Sosnik, A., Zlotver, I., & Potthuri, H. (2025). Inorganic sonosensitizer nanomaterials for sonodynamic therapy of diseases beyond cancer. Progress in Materials Science, 148, 101384. [CrossRef]
- Ebeling, A., & Prada, F. (2025). Sonodynamic Therapy Using 5-Aminolevulinic Acid for Malignant Gliomas: A Review. Life, 15(5), 718. [CrossRef]
- Li, X., Tang, W. J., Wang, W., Yue, S., Yao, H., & Zhu, J. J. (2024). Acid-responsive liposomal nanodrug with promoted tumor penetration for photoacoustic imaging-guided sonodynamic therapy. Chemical Communications, 60(100), 15023-15026. [CrossRef]
- Cao, T. G. N., Kang, J. H., Kim, W., Lim, J., Kang, S. J., You, J. Y., ... & Shim, M. S. (2022). Engineered extracellular vesicle-based sonotheranostics for dual stimuli-sensitive drug release and photoacoustic imaging-guided chemo-sonodynamic cancer therapy. Theranostics, 12(3), 1247. [CrossRef]
- Wang, M., Zhang, N., Li, R., Foiret, J., Ferrara, K. W., Yue, X., & Dai, Z. (2025). Multimodal imaging-guided sonodynamic therapy for orthotopic liver cancer using a functionalized sonosensitizer. Nano Today, 61, 102618. [CrossRef]
- Huang, H., Du, L., Su, R., Li, Z., Shao, Y., Yuan, Y., ... & Zhang, C. (2024). Albumin-based co-loaded sonosensitizer and STING agonist nanodelivery system for enhanced sonodynamic and immune combination antitumor therapy. Journal of Controlled Release, 375, 524-536. [CrossRef]
- Wen, M., Qiu, P., Meng, J., Zhao, W., Wang, X., Niu, S., ... & Xie, D. (2025). Multifunctional nanozymes for sonodynamic-enhanced immune checkpoint blockade therapy by inactivating PI3K/AKT signal pathway. Biomaterials, 318, 123125. [CrossRef]
- Zhan, G., Xu, Q., Zhang, Z., Wei, Z., Yong, T., Bie, N., ... & Yang, X. (2021). Biomimetic sonodynamic therapy-nanovaccine integration platform potentiates Anti-PD-1 therapy in hypoxic tumors. Nano Today, 38, 101195. [CrossRef]
- Satoh, T., Tada, R., Yamaguchi, T., Endo-Takahashi, Y., Kanno, T., Hayakawa, M., ... & Masamune, K. (2025). Induction of an anti-tumor immune response by sonodynamic therapy, combining 5-aminolevulinic acid and high-intensity focused ultrasound using the trigger pulse sonication. WFUMB Ultrasound Open, 100088. [CrossRef]
- Hutton, D. L., Burns, T. C., & Hossain-Ibrahim, K. (2024). A review of sonodynamic therapy for brain tumors. Neurosurgical focus, 57(3), E7. [CrossRef]
- Sanai, N., Tovmasyan, A., Tien, A. C., Chang, Y. W., Margaryan, T., Knight, W., ... & Mehta, S. (2025). An early clinical trial of 5-ALA sonodynamic therapy in recurrent high-grade glioma. Science Translational Medicine, 17(826), eads5813. [CrossRef]
- Suehiro, S., Ohnishi, T., Yamashita, D., Kohno, S., Inoue, A., Nishikawa, M., ... & Kunieda, T. (2018). Enhancement of antitumor activity by using 5-ALA–mediated sonodynamic therapy to induce apoptosis in malignant gliomas: significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model. Journal of neurosurgery, 129(6), 1416-1428. [CrossRef]
- Keenlyside, A., Marples, T., Gao, Z., Hu, H., Nicely, L. G., Nogales, J., ... & Joseph, J. (2023). Development and optimisation of in vitro sonodynamic therapy for glioblastoma. Scientific Reports, 13(1), 20215. [CrossRef]
- Yi, S., Gao, Y., Yu, L., & Chen, Y. (2025). Antibacterial sonodynamic nanomedicine: mechanism, category, and applications. Biomaterials Translational, 6(1), 24. [CrossRef]
- Zheng, G., Tang, Z., & Peng, F. (2025). Ultrasound-activated inorganic nanomaterials to generate ROS for antibacterial applications. Biomaterials Science, 13(10), 2628-2641. [CrossRef]
- Xue, L., Ran, S., Huang, J., Wei, X., Yan, X., He, T., ... & Gu, M. (2025). Antimicrobial sonodynamic therapy: recent advances and challenges in new therapeutic approaches to antimicrobials. Journal of Pharmaceutical Analysis, 101375. [CrossRef]
- Zhang, Z., Wang, Y., Qu, J., Ding, D., Wang, M., Yue, X., ... & Shen, J. (2024). Highly effective DPA-SCP sonosensitizers for biofilm removal in infected root canals via sonodynamic therapy. Materials Chemistry Frontiers, 8(23), 3906-3918. [CrossRef]
- Lafond, M., Yoshizawa, S., & Umemura, S. I. (2019). Sonodynamic therapy: advances and challenges in clinical translation. Journal of Ultrasound in Medicine, 38(3), 567-580. [CrossRef]
- Bonosi, L., Marino, S., Benigno, U. E., Musso, S., Buscemi, F., Giardina, K., ... & Maugeri, R. (2023). Sonodynamic therapy and magnetic resonance-guided focused ultrasound: new therapeutic strategy in glioblastoma. Journal of neuro-oncology, 163(1), 219-238. [CrossRef]
- Placantonakis, D., Grabowski, M., Burns, T. C., Butowski, N. A., Fenn, P., Clanton, R., ... & Benaim, E. (2024). A phase 1/2 dose escalation and expansion study of sonodynamic therapy with SONALA-001 in combination with Exablate 4000 Type 2.0 MR-guided focused ultrasound in patients with progressive or recurrent glioblastoma (rGBM). [CrossRef]
- Sanai, N., Tien, A., Tovmasyan, A., Chang, Y., Margaryan, T., Hendrickson, K., ... & Mehta, S. (2025, October). A CLINICAL UPDATE OF A FIRST-IN-HUMAN PHASE 0/1 TRIAL OF 5-AMINOLEVULINIC ACID SONODYNAMIC THERAPY (5-ALA SDT) IN RECURRENT GLIOBLASTOMA. In NEURO-ONCOLOGY (Vol. 27). JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA: OXFORD UNIV PRESS INC. [CrossRef]
- Rama, E., May, J. N., Rix, A., Lammers, T., & Kiessling, F. (2025). Image-guided strategies to improve drug delivery to tumors beyond using the enhanced permeability and retention (EPR) effect. Biochemical and Biophysical Research Communications, 152346. [CrossRef]
- Belyaev, I. B., Griaznova, O. Y., Yaremenko, A. V., Deyev, S. M., & Zelepukin, I. V. (2025). Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Advanced Drug Delivery Reviews, 115550. [CrossRef]
- Khan, M. S., Alqahtani, T., Al Shmrany, H., Gupta, G., Goh, K. W., Sahebkar, A., & Kesharwani, P. (2025). Enhanced permeability and retention (EPR) effect: Advances in nanomedicine for improved tumor targeting. Biomaterials Advances, 214636. [CrossRef]
- Ikeda-Imafuku, M., Wang, L. L. W., Rodrigues, D., Shaha, S., Zhao, Z., & Mitragotri, S. (2022). Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. Journal of Controlled Release, 345, 512-536. [CrossRef]
- Hoang, T. N., Lin, H. C., Tsai, C. H., Jan, C. K., & Liu, H. L. (2022). Passive Cavitation Enhancement Mapping via an Ultrasound Dual-Mode phased array to monitor blood-brain barrier opening. Journal of Medical and Biological Engineering, 42(6), 757-766. [CrossRef]
- Zhu, Y., Zhang, G., Zhang, Q., Luo, L., Ding, B., Guo, X., ... & Tu, J. (2024). Real-time passive cavitation mapping and B-mode fusion imaging via hybrid adaptive beamformer with modified diagnostic ultrasound platform. Ultrasonics, 142, 107375. [CrossRef]
- Joyce, P., Allen, C. J., Alonso, M. J., Ashford, M., Bradbury, M. S., Germain, M., ... & Santos, H. A. (2024). A translational framework to DELIVER nanomedicines to the clinic. Nature nanotechnology, 19(11), 1597-1611. [CrossRef]
- Saxena, S., Sharma, S., Kumar, G., & Thakur, S. (2025). Unravelling the complexity of CARPA: a review of emerging advancements in therapeutic strategies. Archives of Dermatological Research, 317(1), 439. [CrossRef]
- Atre, P., & Rizvi, S. A. (2024). A brief overview of quality by design approach for developing pharmaceutical liposomes as nano-sized parenteral drug delivery systems. RSC Pharmaceutics. [CrossRef]
- Niyazi, M., Andratschke, N., Bendszus, M., Chalmers, A. J., Erridge, S. C., Galldiks, N., ... & Minniti, G. (2023). ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiotherapy and Oncology, 184, 109663. [CrossRef]
- Zhang, D. Y., Pearce, J. J., Mazza, J., Petrosyan, E., Borghei, A., Patel, N., & Sani, S. (2023). Initiating a magnetic resonance-guided focused ultrasound program: comprehensive workflow and lessons learned from the initial 116 cases. Stereotactic and Functional Neurosurgery, 101(2), 101-111. [CrossRef]
- Pallares, R. M., Mottaghy, F. M., Schulz, V., Kiessling, F., & Lammers, T. (2022). Nanoparticle diagnostics and theranostics in the clinic. Journal of Nuclear Medicine, 63(12), 1802-1808. [CrossRef]
- Zhao, P., Wu, T., Tian, Y., You, J., & Cui, X. (2024). Recent advances of focused ultrasound induced blood-brain barrier opening for clinical applications of neurodegenerative diseases. Advanced Drug Delivery Reviews, 209, 115323. [CrossRef]
- Zeng, S., Chen, J., Gao, R., Chen, R., Xue, Q., Ren, Y., ... & Fang, C. (2024). NIR-II photoacoustic imaging-guided oxygen delivery and controlled release improves photodynamic therapy for hepatocellular carcinoma. Advanced Materials, 36(4), 2308780. [CrossRef]
- Zhang, Q., Zhu, Y., Zhang, G., Xue, H., Ding, B., Tu, J., ... & Guo, X. (2024). 2D spatiotemporal passive cavitation imaging and evaluation during ultrasound thrombolysis based on diagnostic ultrasound platform. Ultrasonics Sonochemistry, 110, 107051. [CrossRef]
- Mattay, R. R., Kim, K., Shah, L., Shah, B., Sugrue, L., Safoora, F., ... & Narsinh, K. H. (2024). MR thermometry during transcranial MR imaging–guided focused ultrasound procedures: a review. American Journal of Neuroradiology, 45(1), 1-8. [CrossRef]
- Kong, D., Liu, G., Cheng, B., Qi, X., Zhu, J., He, Q., ... & Gong, Q. (2024). A novel transcranial MR Guided focused ultrasound method based on the ultrashort echo time skull acoustic model and phase retrieval techniques. Scientific Reports, 14(1), 11876. [CrossRef]
- Chien, C. Y., Yang, Y., Gong, Y., Yue, Y., & Chen, H. (2022). Blood-brain barrier opening by individualized closed-loop feedback control of focused ultrasound. BME frontiers, 2022, 9867230. [CrossRef]
- Kong, C., & Chang, W. S. (2023). Preclinical research on focused ultrasound-mediated blood–brain barrier opening for neurological disorders: a review. Neurology international, 15(1), 285-300. [CrossRef]
- Durham, P. G., Butnariu, A., Alghorazi, R., Pinton, G., Krishna, V., & Dayton, P. A. (2024). Current clinical investigations of focused ultrasound blood-brain barrier disruption: A review. Neurotherapeutics, 21(3), e00352. [CrossRef]
- Chien, C. Y., Xu, L., Pacia, C. P., Yue, Y., & Chen, H. (2022). Blood–brain barrier opening in a large animal model using closed-loop microbubble cavitation-based feedback control of focused ultrasound sonication. Scientific reports, 12(1), 16147. [CrossRef]
- Chien, C. Y., Xu, L., Yuan, J., Fadera, S., Stark, A. H., Athiraman, U., ... & Chen, H. (2024). Quality assurance for focused ultrasound-induced blood-brain barrier opening procedure using passive acoustic detection. EBioMedicine, 102. [CrossRef]
- Fan, C. H., Wu, N., & Yeh, C. K. (2023). Enhanced sonodynamic therapy by carbon dots-shelled microbubbles with focused ultrasound. Ultrasonics sonochemistry, 94, 106342. [CrossRef]
- Lea-Banks, H., Wu, S. K., Lee, H., & Hynynen, K. (2022). Ultrasound-triggered oxygen-loaded nanodroplets enhance and monitor cerebral damage from sonodynamic therapy. Nanotheranostics, 6(4), 376. [CrossRef]
- Gray, M. D., Elbes, D., Paverd, C., Lyka, E., Coviello, C. M., Cleveland, R. O., & Coussios, C. C. (2020). Dual-array passive acoustic mapping for cavitation imaging with enhanced 2-D resolution. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(3), 647-663. [CrossRef]
- Kamimura, H. A., Wu, S. Y., Grondin, J., Ji, R., Aurup, C., Zheng, W., ... & Konofagou, E. E. (2020). Real-time passive acoustic mapping using sparse matrix multiplication. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 68(1), 164-177. [CrossRef]
- Blackwell, J., Kraśny, M. J., O'Brien, A., Ashkan, K., Galligan, J., Destrade, M., & Colgan, N. (2022). Proton resonance frequency shift thermometry: a review of modern clinical practices. Journal of Magnetic Resonance Imaging, 55(2), 389-403. [CrossRef]
- deSouza, N. M., Gedroyc, W., Rivens, I., & Ter Haar, G. (2022). Tissue specific considerations in implementing high intensity focussed ultrasound under magnetic resonance imaging guidance. Frontiers in Oncology, 12, 1037959. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
