Submitted:
01 February 2026
Posted:
03 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Protein Oxidation
2.2. DNA-Induced Oxidative Damage
2.3. In Vivo Tests Using the Caenorhabditis Elegans Model
2.3.1. Toxicity
2.3.2. Protection Against Oxidative Stress Induced by Juglone
2.3.3. Protection Against Thermal Stress
2.3.4. Longevity Assay
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Obtaining Samples and Preparing Hydroethanolic Extracts of Geopropolis
4.3. Macromolecule Protection Assays
4.3.1. Protein Oxidation
4.3.2. DNA-Induced Oxidative Damage
4.4. In Vivo Assays Using the Caenorhabditis Elegans Model
4.4.1. Cultivation and Maintenance of C. elegans
4.4.2. Acute Toxicity Assessment
4.4.3. Protection Against Oxidative Stress Induced by Juglone
4.4.4. Protection Against Thermal Stress
4.4.5. Longevity Assay
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and antioxidants: physiological and pathological role. Antioxidants 2024, 13(5), 602. [CrossRef]
- Fatma, H.; Jameel, M.; Siddique, H.R. An update on phytochemicals in redox homeostasis: “Virtuous or Evil” in cancer chemoprevention? Chemistry 2023, 5(1), 201–222. [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 2019, 24(8), 1583. [CrossRef]
- Remigante, A.; Morabito, R. Cellular and molecular mechanisms in oxidative stress-related diseases. Int. J. Mol. Sci. 2022, 23(14), 8017. [CrossRef]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells 2022, 11(3), 552. [CrossRef]
- World Health Organization—Noncommunicable Diseases. Available online: https://www.who.int/health-topics/noncommunicable-diseases#tab=tab_1 (accessed on 20 August 2025).
- Nediani, C.; Ruzzolini, J.; Dinu, M. Oxidative stress and inflammation as targets for novel preventive and therapeutic approaches in non-communicable diseases III. Antioxidants 2024, 13(11), 1404. [CrossRef]
- Chiang, J.C.; Chen, W.M.; Newman, C.; Chen, B.P.; Lee, H. Lysophosphatidic acid receptor 3 promotes mitochondrial homeostasis against oxidative stress: potential therapeutic approaches for Hutchinson–Gilford progeria syndrome. Antioxidants 2022, 11(2), 351. [CrossRef]
- Goh, J.; Wong, E.; Soh, J.; Maier, A.B.; Kennedy, B.K. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J. 2023, 290(3), 649–668. [CrossRef]
- Nogueira-Neto, P. Vida e criação de abelhas indígenas sem ferrão, 1ª ed.; Edição Nogueirapis: São Paulo, Brazil, 1997; 446 p.
- Oliveira, L.P.G.; Conte, F.L.; de Oliveira Cardoso, E.; Conti, B.J.; Santiago, K.B.; de Assis Golim, M.; Sforcin, J.M. A new chemotherapeutic approach using doxorubicin simultaneously with geopropolis favoring monocyte functions. Life Sci. 2019, 217, 81–90. [CrossRef]
- Santos, C.M.; Campos, J.F.; dos Santos, H.F.; Balestieri, J.B.P.; Silva, D.B.; de Picoli Souza, K.; et al. Chemical composition and pharmacological effects of geopropolis produced by Melipona quadrifasciata anthidioides. Oxid. Med. Cell. Longev. 2017, 2017, 1–12. [CrossRef]
- Honorio, M.S.; Sartori, A.A.; Ripari, N.; Santiago, K.B.; Sforcin, J.M. Anti-inflammatory action of geopropolis produced by stingless bees on human peripheral blood mononuclear cells. Hum. Immunol. 2024, 85(4), 110825. [CrossRef]
- Silva, P.G.D.; Chaves, E.J.F.; Silva, T.M.S.; Rocha, G.B.; Dantas, W.M.; Oliveira, R.N.D.; Pena, L.J. Antiviral activity of flavonoids from geopropolis of the Brazilian Jandaira bee against Zika and dengue viruses. Pharmaceutics 2023, 15(10), 2494. [CrossRef]
- Sousa-Fontoura, D.M.; Olinda, R.G.; Viana, G.A.; De F. M. Costa, K.M.; Batista, J.S.; Serrano, R.M.; et al. Wound healing activity and chemical composition of geopropolis from Melipona subnitida. Rev. Bras. Farmacogn. 2020, 30, 367–373. [CrossRef]
- Dutra, R.P.; Bezerra, J.L.; Silva, M.C.P.D.; Batista, M.C.A.; Patrício, F.J.B.; et al. Antileishmanial activity and chemical composition from Brazilian geopropolis produced by stingless bee Melipona fasciculata. Rev. Bras. Farmacogn. 2019, 29, 287–293. [CrossRef]
- Batista, J.S.; da Silva Teofilo, T.; de Araujo Junior, H.N.; Felix, N.S.; de Paiva, K.A.R.; et al. Gastroprotective effect of the hydroethanolic extract of geopropolis produced by Melipona subnitida (Meliponinae, Apidae) in Wistar rats. Vet. Med. 2025, 70(4), 134. [CrossRef]
- Paz, M.M.D.; Sette, K.M.; dos Santos, R.E.; Barbosa e Vasconcelos, A.L.; Costa, D.C.F.D.; Amaral, A.C.F.; et al. Brazilian stingless bee geopropolis exhibits antioxidant properties and anticancer potential against hepatocellular carcinoma cells. Antioxidants 2025, 14(2), 141. [CrossRef]
- Santos, H.F.D.; Campos, J.F.; Santos, C.M.D.; Balestieri, J.B.P.; Silva, D.B.; Carollo, C.A.; et al. Chemical profile and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of geopropolis from the stingless bee Melipona orbignyi. Int. J. Mol. Sci. 2017, 18(5), 953. [CrossRef]
- Gabriel, M.B.; Carneiro, M.J.; de Camargo, R.C.; Sawaya, A.C. The chemical composition and antioxidant activity of mandaçaia (Melipona quadrifasciata) geopropolis varies more due to region than month of collection. Nat. Prod. Res. 2022, 36(6), 1626–1630. [CrossRef]
- Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [CrossRef]
- Sorokina, M.; Steinbeck, C. Review on natural products databases: where to find data in 2020. J. Cheminform. 2020, 12(1), 20. [CrossRef]
- Souza, R.C.D.S.; Yuyama, L.K.O.; Aguiar, J.P.L.; Oliveira, F.P.M. Valor nutricional do mel e pólen de abelhas sem ferrão da região amazônica. Acta Amazon. 2004, 34, 333–336. [CrossRef]
- Tramutola, A.; Lanzillotta, C.; Perluigi, M.; Butterfield, D.A. Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull. 2017, 133, 88–96. [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev. 2010, 4(8), 118. [CrossRef]
- Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Lopez-Burillo, S.; Reiter, R.J. Oxidative damage to catalase induced by peroxyl radicals: functional protection by melatonin and other antioxidants. Free Radic. Res. 2003, 37(5), 543–553. [CrossRef]
- Cecarini, V.; Gee, J.; Fioretti, E.; Amici, M.; Angeletti, M.; et al. Protein oxidation and cellular homeostasis: emphasis on metabolism. Biochim. Biophys. Acta Mol. Cell Res. 2007, 1773(2), 93–104. [CrossRef]
- Selvaraj, N.R.; Nandan, D.; Nair, B.G.; Nair, V.A.; Venugopal, P.; et al. Oxidative stress and redox imbalance: common mechanisms in cancer stem cells and neurodegenerative diseases. Cells 2025, 14(7), 511. [CrossRef]
- Rajan, I.; Narayanan, N.; Rabindran, R.; Jayasree, P.R.; Manish Kumar, P.R. Zingerone protects against stannous chloride-induced and hydrogen peroxide-induced oxidative DNA damage in vitro. Biol. Trace Elem. Res. 2013, 155, 455–459. [CrossRef]
- Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019, 20(10), 2407. [CrossRef]
- Wu, X.; Dhanasekaran, S. Protective effect of leaf extract of Abutilon indicum on DNA damage and peripheral blood lymphocytes in combating the oxidative stress. Saudi Pharm. J. 2020, 28(8), 943–950. [CrossRef]
- Savina, N.V.; Nikitchenko, N.V.; Kuzhir, T.D.; Rolevich, A.I.; Krasny, S.A.; Goncharova, R.I. The cellular response to oxidatively induced DNA damage and polymorphism of some DNA repair genes associated with clinicopathological features of bladder cancer. Oxid. Med. Cell. Longev. 2016, 2016, 1–13. [CrossRef]
- Schumacher, B.; Pothof, J.; Vijg, J.; Hoeijmakers, J.H. The central role of DNA damage in the ageing process. Nature 2021, 592(7856), 695–703. [CrossRef]
- Zhao, L.; Yu, M.; Sun, M.; Xue, X.; Wang, T.; Cao, W.; Sun, L. Rapid determination of major compounds in the ethanol extract of geopropolis from Malaysian stingless bees, Heterotrigona itama, by UHPLC-Q-TOF/MS and NMR. Molecules 2017, 22(11), 1935. [CrossRef]
- Ferreira, B.L.; Gonzaga, L.V.; Vitali, L.; Micke, G.A.; Maltez, H.F.; et al. Southern-Brazilian geopropolis: A potential source of polyphenolic compounds and assessment of mineral composition. Food Res. Int. 2019, 126, 108683. [CrossRef]
- Coelho, G.R.; Mendonça, R.Z.; Vilar, K.D.S.; Figueiredo, C.A.; Badari, J.C.; et al. Antiviral action of hydromethanolic extract of geopropolis from Scaptotrigona postica against antiherpes simplex virus (HSV-1). Evid. Based Complement. Alternat. Med. 2015, 2015, 287206. [CrossRef]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6(2), 115–123. [CrossRef]
- Sjakste, N.; Djelić, N.; Dzintare, M.; Živković, L. DNA-binding and DNA-protecting activities of small natural organic molecules and food extracts. Chem.-Biol. Interact. 2020, 323, 109030. [CrossRef]
- Kim, D.K.; Kim, T.H.; Lee, S.J. Mechanisms of aging-related proteinopathies in Caenorhabditis elegans. Exp. Mol. Med. 2016, 48(10), e263. [CrossRef]
- Hunt, P.R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 2017, 37(1), 50–59. [CrossRef]
- Ayuda-Durán, B.; González-Manzano, S.; González-Paramás, M.A.; Santos-Buelga, C. Caenorhabditis elegans as a model organism to evaluate the antioxidant effects of phytochemicals. Molecules 2020, 25(14), 3194. [CrossRef]
- Abdullah, N.A.; Ja’afar, F.; Yasin, H.M.; Taha, H.; Petalcorin, M.I.; et al. Physicochemical analyses, antioxidant, antibacterial, and toxicity of propolis particles produced by the stingless bee Heterotrigona itama found in Brunei Darussalam. Heliyon 2019, 5(9), e02476. [CrossRef]
- Arteman, K.D.S.; da Rocha, P.D.S.; Leite, D.F.; Oliveira, A.S.; da Silva, I.V.; et al. Plebeia catamarcensis and Tetragonisca fiebrigi (Hymenoptera, Apidae) propolis promotes longevity and anti-Alzheimer effects in Caenorhabditis elegans. PLoS One 2025, 20(6), e0321487. [CrossRef]
- Cunha, M.G.; Sardi, J.D.C.O.; Freires, I.A.; Franchin, M.; Rosalen, P.L. Antimicrobial, anti-adherence and antibiofilm activity against Staphylococcus aureus of a 4-phenyl coumarin derivative isolated from Brazilian geopropolis. Microb. Pathog. 2020, 139, 103855. [CrossRef]
- Wang, P.; Zhang, S.D.; Jiao, J.; Wang, W.; Yu, L.; Zhao, X.L.; Fu, Y.J. ROS-mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro. Toxicol. Appl. Pharmacol. 2019, 379, 114647. [CrossRef]
- Back, P.; Braeckman, B.P.; Matthijssens, F. ROS in aging Caenorhabditis elegans: damage or signaling? Oxid. Med. Cell. Longev. 2012, 2012, 608478. [CrossRef]
- Mathew, R.; Bhadra, M.P.; Bhadra, U. Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology 2017, 18(1), 35–53. [CrossRef]
- Tullet, J.M.; Green, J.W.; Au, C.; Benedetto, A.; Thompson, M.A.; Clark, E.; et al. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in Caenorhabditis elegans by distinct mechanisms. Aging Cell 2017, 16(5), 1191–1194. [CrossRef]
- Martel, J.; Wu, C.Y.; Peng, H.H.; Ko, Y.F.; Yang, H.C.; et al. Plant and fungal products that extend lifespan in Caenorhabditis elegans. Microb. Cell 2020, 7(10), 255. [CrossRef]
- Emami, N.K.; Jung, U.; Voy, B.; Dridi, S. Radical response: effects of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Antioxidants 2021, 10(1), 35. [CrossRef]
- Brunquell, J.; Morris, S.; Lu, Y.; Cheng, F.; Westerheide, S.D. The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans. BMC Genomics 2016, 17(1), 1–18. [CrossRef]
- Kyriakou, E.; Taouktsi, E.; Syntichaki, P. The thermal stress coping network of the nematode Caenorhabditis elegans. Int. J. Mol. Sci. 2022, 23(23), 14907. [CrossRef]
- Jovic, K.; Sterken, M.G.; Grilli, J.; Bevers, R.P.; Rodriguez, M.; et al. Temporal dynamics of gene expression in heat-stressed Caenorhabditis elegans. PLoS One 2017, 12(12), e0189445. [CrossRef]
- Oh, S.W.; Mukhopadhyay, A.; Svrzikapa, N.; Jiang, F.; Davis, R.J.; Tissenbaum, H.A. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl. Acad. Sci. U.S.A. 2005, 102(12), 4494–4499. [CrossRef]
- Tepper, R.G.; Ashraf, J.; Kaletsky, R.; Kleemann, G.; Murphy, C.T.; Bussemaker, H.J. PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2-mediated development and longevity. Cell 2013, 154(3), 676–690. [CrossRef]
- Ge, Y.; Chen, H.; Wang, J.; Liu, G.; Cui, S.W.; et al. Naringenin prolongs lifespan and delays aging mediated by IIS and MAPK in Caenorhabditis elegans. Food Funct. 2021, 12(23), 12127–12141. [CrossRef]
- Wolf, M.; Nunes, F.; Henkel, A.; Heinick, A.; Paul, R.J. The MAP kinase JNK-1 of Caenorhabditis elegans: location, activation, and influences over temperature-dependent insulin-like signaling, stress responses, and fitness. J. Cell. Physiol. 2008, 214(3), 721–729. [CrossRef]







| Longevity | Average life expectancya | P value (log rank) vs. Controlb | Nºc |
|---|---|---|---|
| Control | 18 | 60 (2) | |
| HGMO 12,5 µg/mL | 16 | 0.7563 | 60 (2) |
| HGMO 50 µg/mL | 16 | 0.3390 | 60 (2) |
| HGMO 200 µg/mL | 18 | 0.1725 | 60 (2) |
| HGMO 250 µg/mL | 20 | 0.0068** | 60 (2) |
| HGMQ 12.5 µg/mL | 16 | 0.8620 | 60 (2) |
| HGMQ 50 µg/mL | 16 | 0.7451 | 60 (2) |
| HGMQ 200 µg/mL | 20 | 0.2352 | 60 (2) |
| HGMQ 250 µg/mL | 20 | 0.0285* | 60 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
