Submitted:
31 January 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Biosensors
3. Carbon Dots: Structure, Properties, and Synthesis
3.1. Structure and Classification of Carbon Dots
3.2. Physicochemical Properties Relevant to Biosensing
3.2.1. Photoluminescence and Fluorescence Mechanisms
3.2.2. Electrochemical and Electron-Transfer Properties
3.2.3. Surface Chemistry and Functional Groups
3.2.4. Biocompatibility and Chemical Stability
4. Synthesis Strategies, Characterization, Scalability and Reproducibility Considerations
5. Carbon Dot–Based Point-of-Care and Miniaturized Biosensors
5.1. Microfluidic and Lab-on-Chip Platforms
5.2. Paper-Based Analytical Devices
5.3. Smartphone-Assisted and Portable Sensing Systems
5.4. Clinical and Field-Deployable Pharmaceutical Testing
6. Electrochemical Carbon Dot (CD)–Based Nano-biosensors for Pharmaceutical Analysis
6.1. Carbon Dot–Modified Electrodes
6.1.1. CDs in Electrode Surface Engineering
6.1.2. Hybrid Nanocomposite-Based Carbon Dot Sensors for Pharmaceutical Analysis
Metal–Carbon Dot Hybrid Nanocomposites

- Gold–carbon dot (Au–CD) nanocomposites:
- Silver–carbon dot (Ag–CD) nanocomposites:
- Platinum–carbon dot (Pt–CD) hybrid nanomaterials:
- Copper–carbon dot (Cu–CD) nanocomposites:
Polymer–Carbon Dot Hybrid Nanocomposites
- Polyaniline–carbon dot (PANI–CD) composites:
- Polypyrrole–carbon dot (PPy–CD) composites:
- PEDOT–carbon dot (PEDOT–CD) composites:
6.2. Electrochemical Sensing Modes
Electrochemical Impedance Spectroscopy
- (a)
- Enzyme-based systems
- (b) Antibody-Based Sensors
- (c) Aptamer-based CD sensors

- (a) DNA based CD biosensors:
- (b) Protein-Based Sensors:
6.3. Applications in Pharmaceutical Analysis
6.3.1. Detection of Active Pharmaceutical Ingredients (APIs)
6.3.2. Drug Stability & Degradation Products — Monitoring and Hybrid Examples
- Direct electrochemical fingerprinting: CD-modified electrodes record the appearance/disappearance of oxidation peaks corresponding to parent drug and its degradation products; This capability is vital for monitoring drugs like paracetamol, where the electrochemical oxidation mechanism involves the transfer of two electrons and two protons to produce (NAPQI), a relatively stable intermediate [19].Furthermore, modified electrodes have successfully achieved the simultaneous determination of N-acetyl-p-aminophenol and its primary degradation product, by resolving their distinct oxidation potentials [70,82]. This approach allows for the direct quality control of formulations without extensive separation steps.
- Electrocatalytic accelerated detection: Metal oxide components (ZnO, MnOx) in hybrids can catalyse specific oxidation steps, amplifying signals from labile degradation intermediates (helpful in forced degradation studies).
- Metal Oxide Hybrids: Composites such as nanorods combined with graphene or CDs have been used to enhance electron transfer rates, which subsequently improves the detection of antibiotics such as sulfamethoxazole and tetracycline by stabilizing radical intermediates during the redox process [55].
- MnOx and Ferrites: Nanohybrids composed of and carbon dots have been reported for colorimetric and electrochemical sensing, leveraging the redox cycling of manganese to detect specific pharmaceutical targets. Additionally, decorated reduced graphene oxide has shown synergistic effects, speeding up electron transfer rates and increasing sensitivity for drugs like furazolidone [55,83].
- Impedimetric monitoring — Electrochemical Impedance Spectroscopy (EIS) with aptamer/antibody immobilized on CD layers detects subtle changes in interfacial properties as degradation products bind or alter surface chemistry. This label-free approach is particularly useful for complex formulations. For instance, an impedimetric aptasensor based on conductive carbon nanodots (CDs) immobilized on a screen-printed electrode was developed for detection. The sensor monitored the change in charge transfer resistance upon analyte binding, achieving a detection limit of 0.5 pM, demonstrating the ability to discriminate structurally similar interfering compounds [72].
| Pharmaceutical analyte | Detection technique | Detection limit | Type of electrochemical biosensor | References(DOI) |
| 17β-Estradiol | Electrochemical impedance spectroscopy | Picomolar range | Aptamer-functionalized carbon dot modified electrode | https://doi.org/10.3390/nano10071346 |
| Amoxicillin | Amperometric detection | ~0.03 µM | Conducting polymer (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate) combined with carbon dots | https://doi.org/10.3390/chemosensors12110234 |
| Caffeine | Differential pulse voltammetry | Low µM range | Carbon dot–chitosan composite modified electrode | https://doi.org/10.3390/s23187731 |
| Ciprofloxacin | Cyclic voltammetry (electrochemical mode of dual-mode platform) | ~0.082 µM | Label-free bio-derived carbon dot modified electrode | https://doi.org/10.1007/s00604-023-05830-y |
| Doxorubicin | Cyclic voltammetry | ~0.09 µM | Screen-printed carbon electrode modified with carbon dot–magnesium oxide nanocomposite | https://doi.org/10.1016/j.inoche.2023.110527 |
| Doxorubicin | Voltammetry | Low µM / sub-µM | Carbon dot–cerium oxide modified screen-printed electrode | https://doi.org/10.1016/j.diamond.2022.109037 |
| Ibuprofen | Square wave voltammetry | ~0.06 µM | Gold nanoparticle–carbon dot hybrid modified electrode | https://doi.org/10.1016/j.aej.2024.08.027 |
| Metronidazole | Differential pulse voltammetry | ~0.18 µM | Carbon dot–metal oxide composite non-enzymatic electrochemical sensor | https://doi.org/10.1016/j.foodchem.2024.140297 |
| Ofloxacin | Differential pulse voltammetry (dual mode) | ~0.127 µM | Biomass-derived carbon quantum dot electrochemical/fluorescence sensor | https://doi.org/10.1021/acsbiomaterials.2c00798 |
| p-Aminophenol (paracetamol impurity) | Differential pulse voltammetry | 0.0456 µM | Same nitrogen-doped carbon dot/manganese oxide hybrid electrode | https://doi.org/10.1039/D1AN00966D |
| Paracetamol | Differential pulse voltammetry | 0.0303 µM | Glassy carbon electrode modified with nitrogen-doped carbon dots decorated with manganese oxide nanospheres | https://doi.org/10.1039/D1AN00966D |
| Tetracycline | Differential pulse voltammetry | ~0.15 µM | Polypyrrole–carbon dot composite electrochemical biosensor | https://doi.org/10.3390/chemosensors12110234 |
| Theophylline | Differential pulse voltammetry | Low micromolar range | Carbon dot–polymer composite electrochemical sensor | https://doi.org/10.3390/s23187731 |
| Pharmaceutical analyte | Fluorescence detection mode | Detection limit | Sensor platform | References |
| Chloramphenicol | Fluorescence quenching | 0.12 µM | Red-emissive carbon dots | https://doi.org/10.1016/j.snb.2021.130231 |
| Ciprofloxacin | Turn-off fluorescence (dual-mode platform) | ~0.293 µM | Bio-derived carbon dot fluorescence/electrochemical dual sensor | https://doi.org/10.1007/s00604-023-05830-y |
| Kanamycin | Fluorescence recovery aptasensor | 0.09 µM | Carbon dot–aptamer fluorescence probe | https://doi.org/10.1021/ac502616n |
| Ofloxacin | Fluorescence quenching (dual-mode) | ~0.127 µM | Rice-husk derived carbon quantum dot dual-mode sensor | https://doi.org/10.1021/acsbiomaterials.2c00798 |
| Oxytetracycline | Fluorescence turn-off | 0.374 µM | Carbon quantum dot fluorescent probe | https://doi.org/10.1016/j.carbon.2019.04.025 |
| Sulfamethazine | Fluorescence quenching | 0.18 µM | Carbon quantum dot optical probe | https://doi.org/10.1016/j.talanta.2020.121301 |
| Tetracycline | Fluorescence quenching | 0.236 µM | Nitrogen-doped carbon quantum dots | https://doi.org/10.1016/j.carbon.2019.04.025 |
| Pharmaceutical analyte | Optical technique | Detection limit | Sensor platform | References |
| Chloramphenicol | Colorimetric / fluorescence | 0.095 µM | Carbon dot colorimetric probe | https://doi.org/10.1016/j.foodchem.2021.129620 |
| Ciprofloxacin | Electrochemiluminescence + electrochemical dual readout | 0.082 µM (electrochemical); 0.293 µM (optical) | Bio-derived carbon dot dual-mode platform | https://doi.org/10.1007/s00604-023-05830-y |
| Ofloxacin | Fluorescence + electrochemical dual mode | ~0.127 µM | Biomass carbon quantum dot optical/electrochemical sensor | https://doi.org/10.1021/acsbiomaterials.2c00798 |
| Sulfamethazine | Electrochemiluminescence | 0.21 µM | Molecularly imprinted graphene quantum dot composite | https://doi.org/10.1039/D0TB02132E |
| Tetracycline | Fluorescence–colorimetric dual sensing | 0.14 µM | Carbon dot–metal ion optical probe | https://doi.org/10.1016/j.snb.2020.128609 |
6.3.3. Impurities, Adulterants, and Counterfeit Detection: Field Screening with Hybrid Sensors
- ●
- Pattern recognition and CD hybrid electrodes Combining CD-based hybrid electrodes with chemometric analysis enables the discrimination between genuine formulations and counterfeits.
- o
- Electronic Tongues: A “voltammetric electronic tongue” utilizing chitosan-coated gold nanoparticles (biocompatible scaffolds similar to CD functions) on SPEs was coupled with Partial Least Squares (PLS) regression to analyse aspirin levels in urine, saliva, and medication tablets. This system successfully predicted drug concentration with a correlation coefficient of 0.99, proving its utility for checking pharmaceutical compliance and identifying adulterated samples [54].
- o
- Multicomponent Discrimination: Advanced carbon nanocomposites, such as fullerene–carbon nanofiber pastes, have been used to simultaneously resolve peaks for multiple non-steroidal anti-inflammatory drugs (NSAIDs) like diclofenac, naproxen, and ibuprofen in water samples, a strategy adaptable for screening multi-component counterfeit formulations [65].
- ●
- Molecular imprinting and CD scaffolds (MIP-CD) — Molecularly imprinted polymers (MIPs) formed over CD surfaces create selective cavities for target drugs, improving discriminative power in complex matrices.
- o
- Paracetamol Detection: A recent MIP-based sensor using a glassy carbon electrode modified with reduced graphene oxide (rGO) and an electropolymerized o-aminophenol film achieved a detection limit of 10nM for paracetamol. This sensor demonstrated excellent reproducibility (RSD < 4%) and selectivity against common excipients, making it a reliable tool for distinguishing pure drugs from adulterated mixtures [84].
- o
- Antibiotic Screening: A fluorescent sensor based on single-hole hollow MIPs combined with carbon quantum dots (HMIP@CQDs) was fabricated for the rapid detection of tetracycline in honey, effectively filtering out complex matrix interference to identify trace antibiotic residues. Similarly, MIP-AuNPs/N,S-doped GQDs were developed for the specific determination of the antiviral drug sofosbuvir [68,85].
- ●
- On-site portable kits — Paper and SPE kits impregnated with CD-metal hybrids facilitate quick field screening.
- o
- Smartphone-Assisted Sensing: A smartphone-assisted sensing platform using red-emissive carbon dots was developed for the on-site quantitation of pesticides (2,4-D), a concept directly translatable to drug screening. The system used a paper-based strip where fluorescence quenching was captured by a phone camera and analysed via an app, offering a low-cost, portable solution [12].
- o
- Conductive Ink Sensors: Innovative sensors using conductive ink based on graphite and shellac on impermeable paper substrates have been demonstrated for sulfamethoxazole detection. These disposable sensors exhibited competitive detection limits and high recovery rates, proving their viability for resource-limited field settings [56].
6.3.4. Therapeutic Drug Monitoring (TDM) & Biological Matrices
6.3.5. Wearable Platforms & Data Integration
Wearable, Point-of-Care & Future Directions
- High-stability POC readers: composites on glassy carbon electrodes (GCE) are preferred for clinic-grade sensitivity and have been applied to the detection of cancer biomarkers and drugs with picomolar detection limits [12,29]. Smartphone-based readouts coupled with these materials are also being developed to lower instrumental costs [12,76].
- Disposable wearables: CD+ polymer ((e.g., PANI, PEDOT:PSS) stacks on flexible substrates like polyethylene terephthalate (PET) or paper are ideal for low-cost and flexible applications, retaining high sensitivity even after mechanical bending tests.
6.4. Regulatory, Scale-Up and Reproducibility Hurdles
6.5. Future Opportunities: Multiplexing, AI, and Hybrid Materials
7. Optical Carbon Dot–Based Nanobiosensors
7.1. Fluorescence-Based CD Sensors
7.1.1. Mechanisms: Turn-on / Turn-off and Ratiometric Sensing
7.2. Fundamental Principles of Fluorescence-Based Sensing
7.3. FRET-Based Sensing Strategies
- (a)
- Distance-Based (Conformational Change) FRET Sensors
- (b) Binding-Induced FRET Sensors
- (c) Enzyme activity-based (cleavage) sensors
7.4. Carbon Dot-Assisted Raman and SERS Platforms
7.5. Singal Enhancement Mechanisms
| S.S.no | Feature | Raman platform | SERS-Platform |
|---|---|---|---|
| 1 | Main mechanism | Chemical / Resonance | Electromagnetic + Chemical |
| 2 | Enhancement factor | 10–10⁶ | 10⁶–10¹⁴ |
| 3 | Metal required | No | Yes (Ag, Au, Cu) |
| 4 | Hot spots | No | Yes |
| 5 | Sensitivity | Low–Medium | Ultra-high |
7.6. Pharmaceutical Sensing Applications
- Aggregation-Induced Quenching (AIQ): In some systems, carbon dots aggregate in the presence of specific analytes, leading to a decrease in fluorescence or a visible color change. This phenomenon is used for the detection of ions, drugs, and biomolecules [107]. Catia Correia et al. [23] synthesized Eu (III)-doped CDs from citric acid and urea via the hydrothermal method, while they used Eu (NO3)3 as a europium source. Due to the difference in CD structure and the presence of active sites for cation binding, the detection performance of europium-doped CDs is higher than that of undoped CDs. The quenching impact of Eu3+-doped CDs for various metal ions is displayed in Figure 5.
7.7. Applications in Pharmaceutical Analysis
8. Future Perspectives and Challenges:
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Varadharajan, S.; Gadre, M.; Mathur, V.; Vasanthan, K.S. Sustainable Integration of Nanobiosensors in Biomedical and Civil Engineering: A Comprehensive Review. ACS Omega 2025, 10, 25120–25157. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Kolahalam, LA; Viswanath, IVK; Diwakar, BS; Govindh, B; Reddy, V; Murthy, YLN. Review on Nanomaterials: Synthesis and Applications. Materials Today: Proceedings, 2020. [Google Scholar]
- Ligler, FS; White, HS. Nanomaterials in Analytical Chemistry. Analytical Chemistry 2013, 85, 1–2. [Google Scholar] [CrossRef]
- Zulfajri, M.; Gedda, G.; Ulla, H.; Habibati; Gollavelli, G.; Huang, G.G. A review on the chemical and biological sensing applications of silver/carbon dots nanocomposites with their interaction mechanisms. Adv. Colloid Interface Sci. 2024, 325, 103115. [Google Scholar] [CrossRef]
- A Lemke, E.; Schultz, C. Principles for designing fluorescent sensors and reporters. Nat. Chem. Biol. 2011, 7, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Machín, A.; Márquez, F. Next-Generation Chemical Sensors: The Convergence of Nanomaterials, Advanced Characterization, and Real-World Applications. Chemosensors 2025, 13, 345. [Google Scholar] [CrossRef]
- López, J.G.; Muñoz, M.; Arias, V.; García, V.; Calvo, P.C.; Ondo-Méndez, A.O.; Rodríguez-Burbano, D.C.; Fonthal, F. Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection. Micromachines 2025, 16, 139. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, R.; Bansal, D.; Bhateria, R.; Sharma, M. A Review on Recent Trends and Future Developments in Electrochemical Sensing. ACS Omega 2024, 9, 7336–7356. [Google Scholar] [CrossRef]
- Terzapulo, X.; Kassenova, A.; Loskutova, A.; Bukasov, R. Carbon dots: Review of recent applications and perspectives in bio-sensing and biomarker detection. Sens. Bio-Sensing Res. 2025, 47. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care—An Updated Review (2018–2021). Nanomaterials 2021, 11, 2525. [Google Scholar] [CrossRef]
- Nazri, N.A.A.; Azeman, N.H.; Luo, Y.; A Bakar, A.A. Carbon quantum dots for optical sensor applications: A review. Opt. Laser Technol. 2021, 139. [Google Scholar] [CrossRef]
- Lodha, SR; Merchant, JG; Pillai, AJ; Shah, SA; Shah, DR; Patole, SP. Carbon dot-based fluorescent sensors for pharmaceutical detection: Current innovations, challenges, and future prospects. Heliyon 2024, 10, e41020. [Google Scholar] [CrossRef] [PubMed]
- Caroleo, F.; Magna, G.; Naitana, M.L.; Di Zazzo, L.; Martini, R.; Pizzoli, F.; Muduganti, M.; Lvova, L.; Mandoj, F.; Nardis, S.; et al. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors 2022, 22, 2649. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Zhai, Q.; Roy, A.K.; Dai, L. Charge transfer of carbon nanomaterials for efficient metal-free electrocatalysis. Interdiscip. Mater. 2022, 1, 28–50. [Google Scholar] [CrossRef]
- Sharma, A.; Tapadia, K.; Sahin, R.; Verma, D.K.; Otero, P.; Agrawal.
- Zoric, M.R.; Singh, V.; Warren, S.; Plunkett, S.; Khatmullin, R.R.; Chaplin, B.P.; Glusac, K.D. Electron Transfer Kinetics at Graphene Quantum Dot Assembly Electrodes. ACS Appl. Mater. Interfaces 2019, 11, 46303–46310. [Google Scholar] [CrossRef]
- Scientific insights into the quantum dots (QDs)-based electrochemical sensors for state-of-the-art applications. ACS Biomaterials Science & Engineering 2024, 10, 7268–313.
- Park, Y.; Yoo, J.; Lim, B.; Kwon, W.; Rhee, S.-W. Improving the functionality of carbon nanodots: doping and surface functionalization. J. Mater. Chem. A 2016, 4, 11582–11603. [Google Scholar] [CrossRef]
- Rajendran, S.; UshaVipinachandran, V.; Haroon, K.H.B.; Ashokan, I.; Bhunia, S.K. A comprehensive review on multi-colored emissive carbon dots as fluorescent probes for the detection of pharmaceutical drugs in water. Anal. Methods 2022, 14, 4263–4291. [Google Scholar] [CrossRef]
- Sato, K.; Katakami, R.; Iso, Y.; Isobe, T. Surface-Modified Carbon Dots with Improved Photoluminescence Quantum Yield for Color Conversion in White-Light-Emitting Diodes. ACS Appl. Nano Mater. 2022, 5, 7664–7669. [Google Scholar] [CrossRef]
- Shabbir, H.; Csapó, E.; Wojnicki, M. Carbon Quantum Dots: The Role of Surface Functional Groups and Proposed Mechanisms for Metal Ion Sensing. Inorganics 2023, 11, 262. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Sun, F.; Xi, K.; Sun, Z.; Zheng, X.; Guo, F.; Zhong, H.; Yang, M.; Shao, Y.; et al. Catalase-like nanozymes combined with hydrogel to facilitate wound healing by improving the microenvironment of diabetic ulcers. Mater. Des. 2023, 225. [Google Scholar] [CrossRef]
- Emam, A.N.; Loutfy, S.A.; Mostafa, A.A.; Awad, H.; Mohamed, M.B. Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Adv. 2017, 7, 23502–23514. [Google Scholar] [CrossRef]
- Fu, C.; Qin, X.; Zhang, J.; Zhang, T.; Song, Y.; Yang, J.; Wu, G.; Luo, D.; Jiang, N.; Bikker, F.J. In vitro and in vivo toxicological evaluation of carbon quantum dots originating from Spinacia oleracea. Heliyon 2023, 9, e13422. [Google Scholar] [CrossRef] [PubMed]
- Havrdova, M.; Hola, K.; Skopalik, J.; Tománková, K.; Petr, M.; Cepe, K.; Polakova, K.; Tucek, J.; Bourlinos, A.B.; Zboril, R. Toxicity of carbon dots – Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 2016, 99, 238–248. [Google Scholar] [CrossRef]
- Gonzalez, M.F.A.; Ramirez-Reyes, A.; Mendoza-Duarte, M.E.; Vega-Rios, A.; Martinez-Ozuna, D.; Rodriguez-Gonzalez, C.A.; Martel-Estrada, S.-A.; Olivas-Armendariz, I. Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications. C 2025, 11, 56. [Google Scholar] [CrossRef]
- Dua, S.; Kumar, P.; Pani, B.; Kaur, A.; Khanna, M.; Bhatt, G. Stability of carbon quantum dots: a critical review. RSC Adv. 2023, 13, 13845–13861. [Google Scholar] [CrossRef]
- Perikala, M.; Bhardwaj, A. Highly Stable White-Light-Emitting Carbon Dot Synthesis Using a Non-coordinating Solvent. ACS Omega 2019, 4, 21223–21229. [Google Scholar] [CrossRef]
- Alam Qureshi, Z.; Dabash, H.; Ponnamma, D.; Abbas, M. Carbon dots as versatile nanomaterials in sensing and imaging: Efficiency and beyond. Heliyon 2024, 10, e31634. [Google Scholar] [CrossRef]
- Huang, Z.; Ren, L. Large Scale Synthesis of Carbon Dots and Their Applications: A Review. Molecules 2025, 30, 774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, R.; Feng, B.; Zhong, X.; Ostrikov, K. (. Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Etefa, H.F.; Tessema, A.A.; Dejene, F.B. Carbon Dots for Future Prospects: Synthesis, Characterizations and Recent Applications: A Review (2019–2023). C 2024, 10, 60. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. A Short Review on Miniaturized Biosensors for the Detection of Nucleic Acid Biomarkers. Biosensors 2023, 13, 412. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Liao, M.; Ke, G.; Zhang, X.-B. Point-of-care biosensors and devices for diagnostics of chronic kidney disease. Sensors Diagn. 2024, 3, 1789–1806. [Google Scholar] [CrossRef]
- Tricoli, A.; Neri, G. Miniaturized Bio-and Chemical-Sensors for Point-of-Care Monitoring of Chronic Kidney Diseases. Sensors 2018, 18, 942. [Google Scholar] [CrossRef]
- Wang, L. Förster resonance energy transfer (FRET)-based small-molecule sensors. Chemical Society Reviews 2020, 49, 5110–39. [Google Scholar]
- Alhalaili, B.; Popescu, I.N.; Rusanescu, C.O.; Vidu, R. Microfluidic Devices and Microfluidics-Integrated Electrochemical and Optical (Bio)Sensors for Pollution Analysis: A Review. Sustainability 2022, 14, 12844. [Google Scholar] [CrossRef]
- Noviana, E.; McCord, C.P.; Clark, K.M.; Jang, I.; Henry, C.S. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab a Chip 2019, 20, 9–34. [Google Scholar] [CrossRef]
- Hu, S.-W.; Qiao, S.; Xu, B.-Y.; Peng, X.; Xu, J.-J.; Chen, H.-Y. Dual-Functional Carbon Dots Pattern on Paper Chips for Fe3+ and Ferritin Analysis in Whole Blood. Anal. Chem. 2017, 89, 2131–2137. [Google Scholar] [CrossRef]
- Wang, F.; Mei, L.; Qi, J.; Zhu, L. Paper-Based Microfluidic Sensors Utilizing Metal–Organic Framework Materials Modified with Europium and Carbon Quantum Dots for Anthrax Spore Biomarker Detection. ACS Appl. Nano Mater. 2024, 7, 7043–7051. [Google Scholar] [CrossRef]
- Kumar, P.; Sarkar, N.; Singh, A.; Kaushik, M. Nanopaper Biosensors at Point of Care. Bioconjugate Chem. 2022, 33, 1114–1130. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Miao, C.; Li, R.; Ji, Y. Fluorescent paper–based sensor based on carbon dots for detection of folic acid. Anal. Bioanal. Chem. 2020, 412, 2805–2813. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Yu, L.; Li, T.; Chen, L.; Han, X.; Chai, F. The synthesis of carbon dots by folic acid and utilized as sustainable probe and paper sensor for Hg2+ sensing and cellular imaging. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2022, 285, 121865. [Google Scholar] [CrossRef] [PubMed]
- Rossini, E.L.; Milani, M.I.; Lima, L.S.; Pezza, H.R. Paper microfluidic device using carbon dots to detect glucose and lactate in saliva samples. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2021, 248, 119285. [Google Scholar] [CrossRef] [PubMed]
- Azodo, A.P.; Mezue, T.C.; Omokaro, I. Smartphone-Based Biosensors: Current Trends, Challenges, and Future Prospects; LOCATION OF CONFERENCE, COUNTRYDATE OF CONFERENCE, 2025; p. 10. [Google Scholar]
- Zong, H.; Zhang, Y.; Liu, X.; Xu, Z.; Ye, J.; Lu, S.; Guo, X.; Yang, Z.; Zhang, X.; Chai, M.; et al. Recent trends in smartphone-based optical imaging biosensors for genetic testing: A review. View 2023, 4. [Google Scholar] [CrossRef]
- Ding, H; Wei, JS; Zhong, N. A smartphone-based ratiometric fluorescence platform using carbon dots for on-site detection of heavy metals. Langmuir 2017, 33, 12635–42. [Google Scholar] [CrossRef]
- Zhang, Y; Wang, Y; Liu, X. Paper-based microfluidic device using carbon dots to detect glucose and lactate in saliva samples. Biosensors and Bioelectronics 2019, 126, 232–9. [Google Scholar]
- Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253. [Google Scholar] [CrossRef]
- Bogdan, J.; Zarzyńska, J.; Pławińska-Czarnak, J. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach. Nanoscale Res. Lett. 2015, 10, 1–15. [Google Scholar] [CrossRef]
- Malode, S.J.; Alshehri, M.A.; Shetti, N.P. Nanomaterial-Based Electrochemical Sensors for the Detection of Pharmaceutical Drugs. Chemosensors 2024, 12, 234. [Google Scholar] [CrossRef]
- Aihaiti, A.; Li, Z.; Qin, Y.; Meng, F.; Li, X.; Huangfu, Z.; Chen, K.; Zhang, M. Construction of Electrochemical Sensors for Antibiotic Detection Based on Carbon Nanocomposites. Nanomaterials 2022, 12, 2789. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Iacob, A.D.; Iticescu, C.; Georgescu, P.L. Electrochemical Sensors and Biosensors for the Detection of Pharmaceutical Contaminants in Natural Waters—A Comprehensive Review. Chemosensors 2025, 13, 65. [Google Scholar] [CrossRef]
- Khalilzadeh, A.; Soleymanpour, A.; Zarei, K. Gold nanoparticles @ nitrogen-doped carbon dots modified pencil graphite electrode as an extremely sensitive sensor for trace analysis of ciprofloxacin. J. Nanoparticle Res. 2025, 27, 1–15. [Google Scholar] [CrossRef]
- Lupu, S. Polymeric Composite-Based Electrochemical Sensing Devices Applied in the Analysis of Monoamine Neurotransmitters. Biosensors 2025, 15, 440. [Google Scholar] [CrossRef]
- Khasim, S.; Al-Ghamdi, S.A.; Darwish, A.A.A.; Hamdalla, T.A.; Pasha, A. Biosynthesis of carbon quantum dot nanocomposite as an advanced material for simultaneous electrochemical sensing of D-glucose and paracetamol. Appl. Phys. A 2023, 129, 1–11. [Google Scholar] [CrossRef]
- Sun, W.; Song, B.; Li, S. Fabrication of carbon dots modified electrode for electrochemical sensing of paclitaxel as an important anticancer drug. Alex. Eng. J. 2024, 105, 682–691. [Google Scholar] [CrossRef]
- Miao, H.; Wang, P.; Cong, Y.; Dong, W.; Li, L. Preparation of Ciprofloxacin-Based Carbon Dots with High Antibacterial Activity. Int. J. Mol. Sci. 2023, 24, 6814. [Google Scholar] [CrossRef] [PubMed]
- Aslam, H.K.; Bilal, S.; Mir, S.; Tabassum, S.; Gilani, M.A.; Yaqub, M.; Asim, M. A robust and simple non-enzymatic electrochemical sensor based on carbon dots-metal oxide composite for the detection of metronidazole traces in food products. Food Chem. 2024, 460, 140297. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, A.; Li, H.; Shoaib, M. Recent Advances in Functionalized Carbon Quantum Dots Integrated with Metal–Organic Frameworks: Emerging Platforms for Sensing and Food Safety Applications. Foods 2025, 14, 2060. [Google Scholar] [CrossRef]
- Arora, G.; Sabran, N.S.; Ng, C.Y.; Low, F.W.; Jun, H. Applications of carbon quantum dots in electrochemical energy storage devices. Heliyon 2024, 10, e35543. [Google Scholar] [CrossRef]
- Mello, G.A.B.; Benjamin, S.R.; de Lima, F.; Dutra, R.F. Recent Advances in Electrochemical Sensors for the Detection of Anti-Inflammatory and Antibiotic Drugs: A Comprehensive Review. Biosensors 2025, 15, 676. [Google Scholar] [CrossRef]
- Lin, L.; Li, M.; Li, P.; Ye, C.; Zhuang, H.; Weng, S.; Chen, F. Simultaneous determination of dopamine and uric acid based on electrocatalytic oxidation of Cu2O-Au and polyaniline nanocomposites. Microchem. J. 2023, 196. [Google Scholar] [CrossRef]
- Adane, W.D.; Chandravanshi, B.S.; Tessema, M. A simple, ultrasensitive and cost-effective electrochemical sensor for the determination of ciprofloxacin in various types of samples. Sens. Bio-Sensing Res. 2022, 39. [Google Scholar] [CrossRef]
- Pan, M.; Xie, X.; Liu, K.; Yang, J.; Hong, L.; Wang, S. Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials 2020, 10, 930. [Google Scholar] [CrossRef]
- Pal, A.; Sk, P.; Chattopadhyay, A. Conducting Carbon Dot–Polypyrrole Nanocomposite for Sensitive Detection of Picric acid. ACS Appl. Mater. Interfaces 2016, 8, 5758–5762. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, MKS; Monteiro, MMS; Henrique, JMM; Martínez-Huitle, CA; Ferro, S; dos Santos, EV. Voltammetric Investigation of Paracetamol Detection in Acidic Conditions by Using Cork-Modified Carbon Paste Electrodes. Chemosensors [Internet]. 10 Sep 2024, 12. Available online: https://www.mdpi.com/2227-9040/12/9/183.
- Smajdor, J.; Paczosa-Bator, B.; Piech, R. Electrochemical Sensor Based on the Hierarchical Carbon Nanocomposite for Highly Sensitive Ciprofloxacin Determination. Membranes 2023, 13, 682. [Google Scholar] [CrossRef] [PubMed]
- Zaid, M.H.M.; Abdullah, J.; Rozi, N.; Rozlan, A.A.M.; Abu Hanifah, S. A Sensitive Impedimetric Aptasensor Based on Carbon Nanodots Modified Electrode for Detection of 17ß-Estradiol. Nanomaterials 2020, 10, 1346. [Google Scholar] [CrossRef]
- Baj-Rossi, C.; Jost, T.R.; Cavallini, A.; Grassi, F.; De Micheli, G.; Carrara, S. Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor. Biosens. Bioelectron. 2014, 53, 283–287. [Google Scholar] [CrossRef]
- Canevari, T.C.; Cincotto, F.H.; Nakamura, M.; Machado, S.A.S.; Toma, H.E. Efficient electrochemical biosensors for ethynylestradiol based on the laccase enzyme supported on single walled carbon nanotubes decorated with nanocrystalline carbon quantum dots. Anal. Methods 2016, 8, 7254–7259. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Anbalagan, A.C.; Korram, J.; Doble, M.; Sawant, S.N. Bio-functionalized carbon dots for signaling immuno-reaction of carcinoembryonic antigen in an electrochemical biosensor for cancer biomarker detection. Nanoscale Res. Lett. 2024, 19, 1–15. [Google Scholar] [CrossRef]
- Yang, M.; Wu, X.; Hu, X.; Wang, K.; Zhang, C.; Gyimah, E.; Yakubu, S.; Zhang, Z. Electrochemical immunosensor based on Ag+-dependent CTAB-AuNPs for ultrasensitive detection of sulfamethazine. Biosens. Bioelectron. 2019, 144, 111643. [Google Scholar] [CrossRef]
- Zaid, M. Sensitive impedimetric aptasensor for 17β-estradiol. Nanomaterials 2020, 10(7), 1346. [Google Scholar]
- Zheng, B.; Li, C.; Wang, L.; Li, Y.; Gu, Y.; Yan, X.; Zhang, T.; Zhang, Z.; Zhai, S. Signal amplification biosensor based on DNA for ultrasensitive electrochemical determination of metronidazole. RSC Adv. 2016, 6, 61207–61213. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jung, H.S.; Matsuura, T.; Lee, H.Y.; Kawai, T.; Gu, M.B. Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosens. Bioelectron. 2007, 22, 2525–2531. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Nasr-Esfahani, P.; Rezaei, B. Metronidazole determination with an extremely sensitive and selective electrochemical sensor based on graphene nanoplatelets and molecularly imprinted polymers on graphene quantum dots. Sensors Actuators B: Chem. 2018, 270, 192–199. [Google Scholar] [CrossRef]
- Gharous, M.; Bounab, L.; Pereira, F.J.; Choukairi, M.; López, R.; Aller, A.J. Electrochemical Kinetics and Detection of Paracetamol by Stevensite-Modified Carbon Paste Electrode in Biological Fluids and Pharmaceutical Formulations. Int. J. Mol. Sci. 2023, 24, 11269. [Google Scholar] [CrossRef] [PubMed]
- Hatimuria, M.; Phukan, P.; Bag, S.; Ghosh, J.; Gavvala, K.; Pabbathi, A.; Das, J. Green Carbon Dots: Applications in Development of Electrochemical Sensors, Assessment of Toxicity as Well as Anticancer Properties. Catalysts 2023, 13, 537. [Google Scholar] [CrossRef]
- Rodríguez, J.A.C.; Arévalo, F.J.; Granero, A.M. Design of an MIP-Based Electrochemical Sensor for the Determination of Paracetamol in Pharmaceutical Samples. Biosensors 2025, 15, 544. [Google Scholar] [CrossRef]
- Ng'ANdu, C.; Nsibande, S.A. Analytical application of carbon dot-based molecularly imprinted polymers in the fabrication of selective fluorescence and electrochemical sensors – a review. Talanta 2025, 297, 128706. [Google Scholar] [CrossRef]
- Nguyen, D.H.H.; Muthu, A.; Elsakhawy, T.; Sheta, M.H.; Abdalla, N.; El-Ramady, H.; Prokisch, J. Carbon Nanodots-Based Sensors: A Promising Tool for Detecting and Monitoring Toxic Compounds. Nanomaterials 2025, 15, 725. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Rinawati, M.; Chang, L.-Y.; Guo, Y.-T.; Chen, K.-J.; Chiu, H.-C.; Lin, Z.-H.; Huang, W.-H.; Haw, S.-C.; Yeh, M.-H. Carbon Nitride Quantum Dots/Polyaniline Nanocomposites for Non-Invasive Glucose Monitoring Using Wearable Sweat Biosensor. ACS Appl. Nano Mater. 2025, 8, 2340–2351. [Google Scholar] [CrossRef]
- Lou, X.-T.; Zhan, L.; Chen, B.-B. Recent Progress of Carbon Dots in Fluorescence Sensing. Inorganics 2025, 13, 256. [Google Scholar] [CrossRef]
- Keerthana, S; Bincy, S; Louis, G; Sudhakar, YN; Anitha, V. Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes. Journal of Fluorescence 2021, 31, 1251–76. [Google Scholar] [CrossRef]
- Ping, L; Jun, A. Fluorescence probes and their sensing applications in nanomaterials system. Talanta Open. 2023, 8, 100248. [Google Scholar]
- Sun, H.; Zhang, W.; Xie, J.; Sun, M.; Hu, P.; Zhang, Z.; Zhu, J.; Zhao, Y.; Liu, L. IFE and Dynamic Quenching mediated fluorescent sensing of Cr(Ⅵ) based on nitrogen-doped biomass carbon dots. Environ. Res. 2025, 286, 123024. [Google Scholar] [CrossRef] [PubMed]
- Arai, MS; de Camargo, ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. Nanoscale Adv [Internet] 2021, 3(18), 5135–65. Available online: https://pubs.rsc.org/en/content/articlelanding/2021/na/d1na00327e. [CrossRef] [PubMed]
- Zhang, Y.; Hou, D.; Wang, Z.; Cai, N.; Au, C. Nanomaterial-Based Dual-Emission Ratiometric Fluorescent Sensors for Biosensing and Cell Imaging. Polymers 2021, 13, 2540. [Google Scholar] [CrossRef]
- Zhang, T.; Gan, Z.; Zhen, S.; Hu, Y.; Hu, X. Ratiometric fluorescent probe based on carbon dots and Zn-doped CdTe QDs for detection of 6-Mercaptopurine. Opt. Mater. 2022, 134. [Google Scholar] [CrossRef]
- Yang, W.; Li, S.; Ni, S.; Liu, G. Advances in FRET-based biosensors from donor-acceptor design to applications. Aggregate 2023, 5. [Google Scholar] [CrossRef]
- Soleja, N; Mohd, Mohsin. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnology Advances [Internet] 2024, 77, 108466. Available online: https://www.sciencedirect.com/science/article/pii/S0734975024001605. [CrossRef] [PubMed]
- Hossain, N; Rimon, MIH; Mimona, MA; Mobarak, MH; Ghosh, J; Islam, MdA; et al. Prospects and challenges of sensor materials: A comprehensive review. e-Prime - Advances in Electrical Engineering, Electronics and Energy [Internet] 2024, 7, 100496. Available online: https://www.sciencedirect.com/science/article/pii/S2772671124000780. [CrossRef]
- Ren, T.; Bramlitt, S.E.; LaFreniere, J.M.; Seitz, W.; Halpern, J.M. Conformation-based stimuli-response sensors: Strategies for optimizing electrochemical and FRET transduction. Sensors Actuators Rep. 2021, 3. [Google Scholar] [CrossRef]
- Review of FRET biosensing and its application in biomolecular detection - PubMed [Internet]. 31 Jan 2026. Available online: https://pubmed.ncbi.nlm.nih.gov/36915763/.
- Ma, Y. Multi-carbon dots and aptamer based ratiometric fluorescence probe. Journal of Nanobiotechnology 2021, 19, 47. [Google Scholar] [CrossRef]
- Ma, H.; Pan, S.-Q.; Wang, W.-L.; Yue, X.; Xi, X.-H.; Yan, S.; Wu, D.-Y.; Wang, X.; Liu, G.; Ren, B. Surface-Enhanced Raman Spectroscopy: Current Understanding, Challenges, and Opportunities. ACS Nano 2024, 18, 14000–14019. [Google Scholar] [CrossRef]
- Geng, P.; Wang, Y.; Peng, Z.; Hu, C.; Zhang, S.; Rao, X.; Chen, G.; Mi, F.; Guan, M. Dual-driven by synergistic enhancement and an intrinsic Raman internal standard: A multifunctional nanocomposite substrate for ratiometric SERS detection and photocatalytic degradation of fluoroquinolone antibiotics. Chem. Eng. J. 2026, 530. [Google Scholar] [CrossRef]
- Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14, 231. [Google Scholar] [CrossRef]
- Dana, C. Raman Spectroscopy and Imaging in Bioanalytics. Analytical Chemistry 2022, 94, 86–119. [Google Scholar]
- Yang, Y.; Kong, L.; Ding, Y.; Xia, L.; Cao, S.; Song, P. High SERS performance of functionalized carbon dots in the detection of dye contaminants. J. Adv. Res. 2024, 68, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Guo, S. Colorimetric identification chips for detecting pollutants. Journal of Cleaner Production 2025, 501, 145322. [Google Scholar] [CrossRef]
- Correia, C.; Martinho, J.; Maçôas, E. A Fluorescent Nanosensor for Silver (Ag+) and Mercury (Hg2+) Ions Using Eu (III)-Doped Carbon Dots. Nanomaterials 2022, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J. Carbon Dot-Based Nanomaterials for Drug Screening and Development. Pharmaceutics 2019, 11(9), 462. [Google Scholar]
- Gu, YZ; Li, JL; Chen, YF; Chai, YQ; Li, ZH; Ruo, Y. Boron and Nitrogen-Codoped Carbon Dots as Highly Efficient Electrochemiluminescence Emitters for Ultrasensitive Detection of Hepatitis B Virus DNA. Analytical Chemistry 2022, 94(21), 7601–8. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wu, T.; Lu, M.; Li, N.; Ma, Y.; Song, L.; Huang, X.; Zhao, J.; Wang, T. An intelligent device with double fluorescent carbon dots based on smartphone for visual and point-of-care testing of Copper(II) in water and food samples. Food Chem. X 2024, 24, 101834. [Google Scholar] [CrossRef]
- Sarkar, T.; Bohidar, H.; Solanki, P.R. Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. Int. J. Biol. Macromol. 2018, 109, 687–697. [Google Scholar] [CrossRef]
- Barrientos, K.; Arango, J.P.; Moncada, M.S.; Placido, J.; Patiño, J.; Macías, S.L.; Maldonado, C.; Torijano, S.; Bustamante, S.; Londoño, M.E.; et al. Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta 2022, 251, 123791. [Google Scholar] [CrossRef]
- Alarfaj, NA. Immunosensing-fluorescence detection of CYFRA 21-1 via carbon quantum dots/zinc oxide nanocomposite. Nanoscale Research Letters 2020, 15, 12. [Google Scholar] [CrossRef]
- Chunduri, LA. Carbon dot based microplate and microfluidic chip immunoassay for HIV-1 p24 antigen. Microfluidics and Nanofluidics 2016, 20, 167. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Yang, X.; Wan, Y.; Liu, C. A novel immunosensor for squamous cell carcinoma antigen determination based on CdTe@Carbon dots nanocomposite electrochemiluminescence resonance energy transfer. Sensors Actuators B: Chem. 2014, 197, 43–49. [Google Scholar] [CrossRef]
- Wu, L. Electrochemiluminescence immunosensor for prostate specific antigen. Sensors and Actuators B 2013, 186, 761–7. [Google Scholar] [CrossRef]
- Filik, H. Electrochemical immunosensor for cytokeratin and neuron-specific enolase. Microchemical Journal. 2022, 183, 107990. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Nouralishahi, A.; Shalbaf, M.; Shayeh, J.S.; Nouralishahi, A. An electrochemical aptasensor for detection of prostate-specific antigen-based on carbon quantum dots-gold nanoparticles. Biotechnol. Appl. Biochem. 2022, 70, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kailasa, SK; Hussain, CM. Carbon Dots in Analytical Chemistry; Elsevier, 2023. [Google Scholar]
- Morrison, D.W.G.; Dokmeci, M.; Demirci, U.; Khademhosseini, A. Clinical Applications of Micro- and Nanoscale Biosensors. In Biomedical Nanostructures; Gonsalves, K.E., Laurencin, C.L., Halberstadt, C.R., Nair, L.S., Eds.; John Wiley & Sons, Inc.: Toronto, ON, Canada, 2008. [Google Scholar]












| S.no | Feature | Normal Raman | CD-Assisted Raman |
|---|---|---|---|
| 1 | Sensitivity | Low | Medium High |
| 2 | Sample adsorption | Poor | Good |
| 3 | Signal strength | Weak | Enhanced |
| 4 | Cost | Low | Still Low |
| 5 | Biocompatibility | High |
| Analytical Technique | Median LOD, M |
Geometric Mean LOD, M |
Biomarkers | References |
| Fluorescence | 8.33E-13 | 8.49E-13 | HIV-1 p24 antigen, CEA, PSA, ATP, GLY, 4,4-dibrominated biphenyl, tetracycline, CYFRA 19-1, AFP, PCT, VEGF, NoV-L, NMP22, anthrax protective antigen, fenitrothion | [113,114] |
| Electrochemiluminescence | 9.28E-15 | 2.10E-16 | CEA, PSA, SCCA | [115,116] |
| Electrochemical | 5.50E-15 | 2.97E-14 | CA125, TNF-a, CEA, Ag-VD2, CYFRA 21-1, NSE | [117] |
| Colorimetric | 7.65E-12 | 1.48E-13 | CEA, Diethyl phthalate, | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
