Submitted:
31 January 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and Methods
2.1. Literature Search
2.2. Database and Classification
- Key information was recorded for each study, including descriptors of the publication (e.g., citation, year, and journal), the scale of analysis (local, regional, national, continental, or global), and geographic details (location, country, and continent). This dataset provided valuable insights into publication trends related to socioecological systems resilience (SES resilience).
-
To assess whether the case studies engaged with the seven principles of resilience thinking, we documented both the number and type of principles addressed. The principles are conceptualized as follows [29,30]:
- Principle 1 – Diversity and redundancy: Systems that include many components, such as species, actors, or knowledge sources, tend to be more resilient than those with fewer elements. Diversity provides options for adaptation, while redundancy ensures that if one component fails, others can compensate. Resilience is strengthened when components respond differently to disturbances [29,31].
- Principle 2 – Connectivity management: Connectivity can influence ecosystem functioning in both positive and negative ways. Well-connected systems often recover more quickly from shocks, but excessive connectivity can accelerate the spread of disturbances. Landscape connectivity is particularly important for sustaining biodiversity [32,33].
- Principle 3 – Slow variables and feedback: Interactions among system components shape configurations that deliver ecosystem services. Managing slow variables and feedback helps maintain systems in desired states. Once a system shifts to an alternative configuration, reversing the change can be extremely difficult [29,30].
- Principle 4 – Complex adaptive systems perspective: Viewing social-ecological systems as complex adaptive systems (CAS) highlights the multiple, simultaneous connections across scales. This perspective embraces unpredictability, uncertainty, and diverse viewpoints, recognizing that coupled human–natural systems are nonlinear, evolutionary, and characterized by feedback [34,35].
- Principle 6 – Broad participation: Inclusive participation in planning and governance enhances trust, shared understanding, accountability, and legitimacy. Active stakeholder involvement integrates diverse perspectives and supports collective action. A key challenge is establishing durable communication structures that reflect the diversity of complex socioecological contexts [30].
- Principle 7 – Polycentric governance: Polycentric governance involves multiple organizations and stakeholders working together to create and enforce rules. This approach strengthens collective action, enhances connectivity, and supports learning across scales and cultures. Well-connected governance systems can respond quickly to disturbances when the right actors are engaged. Effective coordination requires clear and widely accessible information [36].
- 3.
-
To analyze trends in methods for assessing socioecological systems (SES) resilience, the methods used in the case studies were classified into the following categories:
- Qualitative / descriptive tools: These include participatory mapping, sociocultural approaches, and surveys with open-ended questions designed to capture individuals’ perceptions of system resilience [37].
- Dynamic ecological models: This category includes studies that use system dynamics approaches, either through data-driven modeling (DDM) based on machine learning with empirical data [54], or integration techniques such as semantic meta-modeling, which employs Unified Modeling Language to address the complexity of SES resilience evaluation [55,56,57].
- Emerging methods: This group refers to specialized case studies employing novel approaches, such as the stochastic cusp model (CUSPRA), to measure and interpret SES resilience [60].
- 4.
-
To determine which domains of resilience approaches are applied in the case studies reviewed, we draw on the conceptual framework outlined in [66], as follows:
- Engineering resilience approach: Focuses on the speed with which a system returns to equilibrium after a shock. Key elements include recovery time, efficiency, and equilibrium [67].
- Ecological resilience approach: Emphasizes a system’s ability to withstand shocks while maintaining critical relationships and functions. Central aspects are buffer capacity, persistence, robustness, and the ability to absorb disturbances [68].
- Community resilience approach: Defined as a process that links adaptive capacities to a positive trajectory of functioning and adaptation following a disturbance. The emphasis is on adaptive capacity, responses to disturbances, and social dimensions [69].
- Social-ecological resilience approach: Encompasses (i) the extent of disturbance a system can absorb while remaining within its domain of attraction, (ii) its capacity for learning and adaptation, and (iii) its ability to self-organize. This approach highlights adaptive capacity, learning, and innovation [26].
- Socioeconomic/livelihood resilience approach: Refers to the policy-driven ability of an economy to recover from or adjust to adverse external shocks, while also benefiting from positive ones. It focuses on economic response capacity [70]. At the household or individual level, it includes the capacity to avoid poverty despite stressors and repeated shocks over time [71].
- Ecosystem services resilience approach: Proposed in this review as a new domain, this approach is based on the characterization and modeling of specific ecosystem services using established methodological frameworks. It examines how these services are affected by shocks and pressures, such as land-use change, climate change, and socioeconomic drivers. This perspective introduces a novel way to evaluate resilience by explicitly integrating ecosystem service methodologies.
- 5.
-
To define, in a concrete way, the trends in resilience assessment (resilience of what?), each of the 146 case studies was analyzed, and the objects of resilience assessment were classified into the following general categories:
- Terrestrial ecosystems
- Human communities
- Socio-ecological systems
- Ecosystem services
- Agroecosystems
- Marine ecosystems
- Water ecosystems
- Coastal ecosystems
- Urban areas
- Urban and natural areas
- General systems
- Groundwater systems
- Island ecosystems
- Seafood businesses
- 6.
-
To define trends in response to the question “resilience against what?”, 146 documents were reviewed and classified into the following general categories:
- Climate change and climate variability.
- Habitat fragmentation and human changes.
- Natural disasters (Droughts, floods, tornadoes, cyclones, storms).
- Fire frequency increased.
- Climate change, population growth and infrastructure.
- Sea-level rise.
- Urban Growth.
- Economic shocks.
- Invasive species and changing wildfire regimes.
- Nanoplastics Pollution.
- Sea warming.
- 7.
- Finally, to identify the challenges and potential avenues for improving our understanding of the resilience of socioecological systems, the conclusions, recommendations, and limitations of each case study were critically analyzed. This step highlighted methodological gaps, conceptual constraints, and practical insights that can guide future research directions and strengthen the assessment of socioecological systems resilience.
3. Results and Discussion
3.1. Publication Trends: An Overview
3.2. Findings from the Database Analysis
3.2.1. Resilience of What and Against What
3.2.2. Inclusion of the Seven Principles of Resilience Thinking
3.2.3. About the Resilience Approaches’ Findings
3.2.4. Socio-Ecological System Resilience Assessments: Methods, Tools, Current Status, and Future Challenges
- Case study [120] (2021) provides a notable example of applying systems dynamics to assess socio-ecological resilience. The research developed a dynamically coupled modeling framework designed to be replicable and stakeholder-friendly, enabling the quantification of resilience metrics in a dynamic agroecosystem subject to diverse socio-environmental shocks. The model incorporates (i) comparative analyses of variable resilience and (ii) the identification of potential regime shifts, transformations, and previously unrecognized system vulnerabilities. By employing a group-built physical systems model, the study generated feedback loops and complex variable linkages that other models have struggled to capture reliably.
- Study [59] (2022) presents a dynamic Bayesian network approach for constructing temporally robust models of socio-environmental resilience in the Colombian Andes. This methodology adopts a long-term perspective, integrating diverse data sources and interdisciplinary approaches spanning paleoecology, archaeology, anthropology, and history.
- A novel empirical approach to resilience estimation is introduced in [60] (2024) using the stochastic cusp model from catastrophe theory. This model identifies inflection points linked to cusp bifurcations and distinguishes between stable and unstable states in complex systems. The assessment includes three features: (i) estimating the probability a system will cross a hysteresis-marked tipping point; (ii) evaluating resilience relative to multiple external drivers; and (iii) providing management-oriented results for ecosystem governance.
4. Conclusions
Supplementary Materials
References
- Holling, C. Understanding the complexity of economic, ecological, and social systems. Ecosystems 2001, 4, 390–405. [Google Scholar] [CrossRef]
- Ott, K.; D¨oring, R. Theorie und Praxis starker Nachhaltigkeit; Metropolis: Marburg, Germany, 2004; Available online: https://oceanrep.geomar.de/id/eprint/37180/.
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M. Resilient cities: meaning, models, and metaphor for integrating the ecological, socioeconomic, and planning realms. Landsc. Urban Plan. 2004, 69, 369–384. [Google Scholar] [CrossRef]
- Hughes, T.P.; Bellwood, D.R.; Folke, C.; Steneck, R.S.; Wilson, J. New paradigms for supporting the resilience of marine ecosystems. Trends Ecol. Evol. 2005, 20(7), 380–386. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4(1), 1–23. [Google Scholar] [CrossRef]
- Allenby, B.; Fink, J. Toward inherently secure and resilient societies. Science 2005, 309(5737), 1034–1036. [Google Scholar] [CrossRef]
- Ruiz-Agudelo, C.A. Proposal of a Socio-Ecological Resilience Integrated Index (SERII) for Colombia, South America (1985–2022). Sustainability 2025, 17, 6461. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S.; Light, S.S. (Eds.) Barriers and Bridges to the Renewal of Ecosystems and Institutions; Columbia University Press: New York, NY, USA, 1995. [Google Scholar]
- Rose, A. Economic Resilience to Disasters. CARRI Research Report 8. Community & Regional Resilience Institute. 2009. Available online: https://merid.org/case-studies/community-and-regional-resilience-institute/ (accessed on 3 August 2024).
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyzes. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R.; Dakos, V.; Nes, E. Generic indicators of ecological resilience: Inferring the change of a critical transition. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 145–167. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19(4), 733–752. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. Eng. Struct. 2010, 32(11), 3639–3649. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Renschler, C.; Reinhorn, A.M.; Arendt, L. PEOPLES: a framework for evaluating resilience. J. Struct. Eng. 2016, 142(10), 04016063. [Google Scholar] [CrossRef]
- Kammouh, O.; Noori, A.Z.; Taurino, V.; Mahin, S.A.; Cimellaro, G.P. Deterministic and fuzzy-based methods to evaluate community resilience. Earthq. Eng. Eng. Vib. 2018, 17(2), 261–275. [Google Scholar] [CrossRef]
- Kammouh, O., Marasco, S., Noori, A.Z., Mahin, G.C.S. 2018. PEOPLES: indicator-based tool to compute community resilience, in: Eleventh US National Conference on Earthquake Engineering Integrating Science, Engineering & Policy June, 2018.
- De Iuliis, M.; Kammouh, O.; Cimellaro, G.P. Measuring and improving community resilience: A fuzzy logic approach. International Journal of Disaster Risk Reduction 2022, 78, 103118. [Google Scholar] [CrossRef]
- Zhong, F.; Chen, R.; Luo, X.; Song, X.; Ullah, A. Assessing regional resilience in China using a sustainable livelihoods approach: Indicators, influencing factors, and the relationship with economic performance. Ecological Indicators 2024, 158, 111588. [Google Scholar] [CrossRef]
- Wu, W.; Gao, Y.; Chen, C. CLSER: A new indicator for the social-ecological resilience of coastal systems and sustainable management. J. Clean. Prod. 2024, 435, 140564. [Google Scholar] [CrossRef]
- Holling, C.S.; Gunderson, L.H. Resilience and adaptive cycles. In Panarchy: Understanding Transformation in Human and Natural Systems; Island Press: Washington, DC, USA, 2002; pp. 25–62. [Google Scholar]
- Franco-Gaviria, F.; Amador-Jiménez, M.; Millner, N.; Durden, Ch.; Urrego, D.H. Quantifying resilience of socio-ecological systems through dynamic Bayesian networks. Front. For. Glob. Change 2022, 5, 889274. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S. R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockstrom, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Allen, C. R.; Angeler, D. G.; Cumming, G. S.; Folke, C.; Twidwell, D.; Uden, D. R. Quantifying spatial resilience. J. Appl. Ecol. 2016, 53, 625–635. [Google Scholar] [CrossRef]
- Eason, T.; Garmestani, A. S.; Stow, C. A.; Rojo, C.; Alvarez-Cobelas, M.; Cabezas, H. Managing for resilience: An information theory-based approach to assessing ecosystems. J. Appl. Ecol. 2016, 53, 656–665. [Google Scholar] [CrossRef]
- Carpenter, S.; Walker, B.; Anderies, J. M.; Abel, N. From metaphor to measurement: Resilience of what to what? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- Biggs, R.; Schlüter, M.; Schoon, M. L. Principles for building resilience: sustaining ecosystem services in socialecological systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Ruiz-Agudelo, C.A.; Mazzeo, N.; Díaz, I.; Barral, M.P.; Piñeiro, G.; Gadino, I.; Roche, I.; Acuña-Posada, R.J. Land use planning in the Amazon basin: challenges from resilience thinking. Ecology and Society 2020, 25(1), 8. [Google Scholar] [CrossRef]
- Simmons, C.; Walker, R.; Perz, S.; Arima, E.; Aldrich, S.; Caldas, M. Spatial patterns of frontier settlement: balancing conservation and development. Journal of Latin American Geography 2016, 15, 33–58. [Google Scholar] [CrossRef]
- Brudvig, L. A.; Damschen, E. I.; Tewksbury, J. J.; Haddad, N. M.; Levey, D.J. Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proceedings of the National Academy of Sciences of the USA 2009, 106(23), 9328–9332. [Google Scholar] [CrossRef]
- Tambosi, L. R.; Martensen, A. C.; Ribeiro, M. C.; Metzger, J.P. A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restoration Ecology 2014, 22(2), 169–177. [Google Scholar] [CrossRef]
- Holling, C. S.; Berkes, F.; Folke, C. Science, sustainability, and resource management. In Linking social and ecological systems: management practices and social mechanisms for building resilience; Berkes, F., Folke, C., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. Pages 342–362. [Google Scholar]
- Chapin, III F. S.; Folke, C.; Kofinas, G.P. A framework for understanding change. Pages 3-28. In Principles of ecosystem stewardship: resilience-based natural resource management in a changing world; Chapin III, F. S., Kofinas, G. P., Folke, C., Eds.; Springer Science+Business Media: New York, New York, USA, 2009. [Google Scholar] [CrossRef]
- Mann, M. L.; Kaufmann, R. K.; Bauer, D. M.; Gopal, S.; Baldwin, J. G.; Vera-Diaz, M. C. Ecosystem service value and agricultural conversion in the Amazon: implications for policy intervention. Environmental and Resource Economics 2012, 53, 279–295. [Google Scholar] [CrossRef]
- Mustajoki, J.; Marttunen, M. Improving resilience of reservoir operation in the context of watercourse regulation in Finland. EURO J Decis Process 2019, 7, 359–386. [Google Scholar] [CrossRef]
- Wei, W.; Li, H.; Wang, B.; Zhang, K. Rain- and water-use efficiencies of a shrub ecosystem and its resilience to drought in the Central Asia region during 2000 - 2014. Global Ecology and Conservation 2019, 17, e00595. [Google Scholar] [CrossRef]
- Murgatroyd, A.; Hall, J.W. Regulation of freshwater use to restore ecosystem’s resilience. Climate Risk Management 2021, 32, 100303. [Google Scholar] [CrossRef]
- Jakobsson, S.; Evju, M.; Framstad, E.; Imbert, A.; Lyngstad, A.; Sickel, H.; Sverdrup-Thygeson, A.; Topper, J.P.; Vandvik, V.; Velle, L.G.; Aarrestad, P.A.; Nybø, S. Introducing the index-based ecological condition assessment framework (IBECA). Ecological Indicators 2021, 124, 107252. [Google Scholar] [CrossRef]
- Hu, X.; Su, Y.; Ren, K.; Song, F.; Xue, R. Measurement and influencing factors of urban traffic ecological resilience in developing countries: A case study of 31 Chinese cities. Regional Sustainability 2021, 2, 211–223. [Google Scholar] [CrossRef]
- Smith, L.M.; Reschke, E.M.; Bousquin, J.J.; Harvey, J.E.; Summers, J.K. A conceptual approach to characterizing ecological suitability: Informing socio-ecological measures for restoration effectiveness. Ecological Indicators 2022, 143, 109385. [Google Scholar] [CrossRef]
- Chavez-Molina, V.; Nocito, E.S.; Carr, E.; Cavanagh, R.D.; Sylvester, Z.; Becker, S.L.; Dorman, D.D.; Wallace, B.; White, C.; Brooks, C.M. Managing for climate resilient fisheries: Applications to the Southern Ocean. Ocean and Coastal Management 2023, 239, 106580. [Google Scholar] [CrossRef]
- Zampieri, M.; Weissteiner, C.J.; Grizzetti, B.; Toreti, A.; van den Berg, M.; Dentener, F. Estimating resilience of crop production systems: From theory to practice. Science of the Total Environment 2020, 735, 139378. [Google Scholar] [CrossRef] [PubMed]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosystem Services 2017, 26, 79–94. [Google Scholar] [CrossRef]
- Kohler, M.; Devaux, C.; Grigulis, K.; Leitinger, G.; Lavorel, S.; Tappeiner, U. Plant functional assemblages as indicators of the resilience of grassland ecosystem service provision. Ecological Indicators 2017, 73, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Andrade, E.M.; Simas Guerreiro, M.J.; Queiroz Palácio, E.A.; Campos, D.A. Ecohydrology in a Brazilian tropical dry forest: thinned vegetation impact on hydrological functions and ecosystem services. Journal of Hydrology: Regional Studies 2020, 27, 100649. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, L.; Tian, J.; Sun, B.; Jiang, C.; Lu, Y.; Shang, J. Ecosystem services help alleviate the intensity of dryness/wetness. Global Ecology and Conservation 2021, 27, e01581. [Google Scholar] [CrossRef]
- Zaucha, J.; Conides, A.; Klaoudatos, D.; Noren, K. Can the ecosystem services concept help in enhancing the resilience of land-sea social-ecological systems? Ocean & Coastal Management 2016, 124, 33e41. [Google Scholar] [CrossRef]
- Shi, Z.; Zhou, S. A study on the dynamic evaluation of ecosystem health in the Yangtze river Basin of China. Ecological Indicators 2023, 153, 110445. [Google Scholar] [CrossRef]
- Saenz de Miera, L.E.; Pinto, R.; Calvo, L.; Ansola, G. A new index of resilience applicable to external pulse-disturbances that considers the recovery of communities in the short term. Ecological Indicators 2021, 130, 108051. [Google Scholar] [CrossRef]
- Roberts, C.P.; Uden, D.R.; Allen, C.R.; Angeler, D.G.; Powell, L.A.; Allred, B.W.; Jones, M.O.; Maestas, J.D.; Twidwell, D. Tracking spatial regimes in animal communities: Implications for resilience-based management. Ecological Indicators 2022, 136, 108567. [Google Scholar] [CrossRef]
- Amer, L.; Erkoc, M.; Celik, N.; Andiroglu, E. Operationalizing resilience: A deductive fault-driven resilience index for enabling adaptation. Process Safety and Environmental Protection 2023, 177, 1085–1102. [Google Scholar] [CrossRef]
- Willcock, S.; Martínez-López, J.; Hooftman, D. A. P.; Bagstad, K. J.; Balbi, S.; Marzo, A.; Prato, C.; Sciandrello, S.; Signorello, G.; Voigt, B.; Villa, F.; Bullock, J. M.; Athanasiadis, I. N. Machine learning for ecosystem services. Ecosystem Services 2018. [Google Scholar] [CrossRef]
- Villa, F.; Voigt, B.; Erickson, J. D. New perspectives in ecosystem services science as instruments to understand environmental securities. Philosophical Transactions of the Royal Society B: Biological Sciences 2014, 369(1649), 1–15. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Kong, F.; He, T. Spatial-temporal variation, driving mechanism and management zoning of ecological resilience based on RSEI in a coastal metropolitan area. Ecological Indicators 2024, 158, 111447. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, L. Spatio-temporal pattern evolution and dynamic simulation of urban ecological resilience in Guangdong Province, China. Heliyon 2024, 10, e25127. [Google Scholar] [CrossRef] [PubMed]
- Barton, D. N.; Benjamin, T.; Cerdán, C. R.; DeClerck, F.; Madsen, A. L.; Rusch, G. M.; Salazar, Á. G.; Sanchez, D.; Villanueva, C. Assessing ecosystem services from multifunctional trees in pastures using Bayesian belief networks. Ecosystem Services 2016, 18, 165–174. [Google Scholar] [CrossRef]
- Franco-Gaviria, F.; Amador-Jiménez, M.; Millner, N.; Durden, C.; Urrego, D.H. Quantifying resilience of socio-ecological systems through dynamic Bayesian networks. Front. For. Glob. Change 2022, 5, 889274. [Google Scholar] [CrossRef]
- Sguotti, C; Vasilakopoulos, P; Tzanatos, E; Frelat, R. Resilience assessment in complex natural systems. Proc. R. Soc. B 2024, 291, 20240089. [Google Scholar] [CrossRef]
- Yang, S.; Song, S.; Li, F.; Yu, G.; He, G.; Cui, H.; Wang, R.; Sun, B.; Du, D.; Chen, G.; Hirwa, H. Evaluating farmland ecosystem resilience and its obstacle factors in Ethiopia. Ecological Indicators 2023, 146, 109900. [Google Scholar] [CrossRef]
- Poch, M.; Aldao, C.; Godo-Pla, L.; Monclús, H.; Popartan, L.A.; Comas, J.; Cermeron-Romero, M.; Puig, S.; Molinos-Senante, M. Increasing resilience through nudges in the urban water cycle: An integrative conceptual framework to support policy decision-making. Chemosphere 2023, 317, 137850. [Google Scholar] [CrossRef]
- Rozer, V.; Surminski, S.; Laurien, F.; McQuistan, C.; Mechler, R. Multiple resilience dividends at the community level: A comparative study of disaster risk reduction interventions in different countries. Climate Risk Management 2023, 40, 100518. [Google Scholar] [CrossRef]
- Tregarot, E.; D’Olivo, J.P.; Zita-Botelho, A.; Cabrito, A.; Cardoso, G.O.; Casal, G.; Cornet, C.C.; Cragg, S.M.; Degia, A.K.; Fredriksen, S.; Furlan, E.; Heiss, G.; Kersting, D.K.; Marechal, J.P.; Meesters, E.; O’Leary, B.C.; Perez, G.; Seijo-Núnez, C.; Simide, R.; van der Geest, M.; de Juan, S. Effects of climate change on marine coastal ecosystems – A review to guide research and management. Biological Conservation 2024, 289, 110394. [Google Scholar] [CrossRef]
- Anamaghi, S.; Behboudian, M.; Mahjouri, N.; Kerachian, R. A resilience-based framework for evaluating the carrying capacity of water and environmental resources under the climate change. Science of the Total Environment 2023, 902, 165986. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.E.; Berbes-Blazquez, M.; Haider, E.J.; Peterson, G.D. Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. Journal of Applied Ecology 2016, 53, 677–687. [Google Scholar] [CrossRef]
- Pimm, S.L. The complexity and stability of ecosystems. Nature 1984, 307, 321–326. [Google Scholar] [CrossRef]
- Holling, C.S. Engineering resilience versus ecological resilience. In Engineering within Ecological Constraints; Schulze, P., Ed.; National Academies Press: Washington, DC, USA, 1996; pp. 31–44. [Google Scholar]
- Norris, F.H.; Stevens, S.P.; Pfefferbaum, B.; Wyche, K.F.; Pfefferbaum, R.L. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. American Journal of Community Psychology 2008, 41, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Mancini, A.; Salvati, L.; Sateriano, A.; Mancino, G.; Ferrara, A. Conceptualizing and measuring the ‘economy’ dimension in the evaluation of socio-ecological resilience: a brief commentary. International Journal of Latest Trends in Finance and Economic Sciences 2012, 2, 190–196. [Google Scholar]
- Barrett, C.; Constas, M. Toward a theory of resilience for international development applications. Proceedings of the National Academy of Sciences, USA 2014, 111, 14625–14630. [Google Scholar] [CrossRef]
- Yana, H., Zhan, J., Zhang, T. 2011. Resilience of Forest Ecosystems and its Influencing Factors. Procedia Environmental Sciences 10: 2201 – 2206. 2011 3rd International Conference on Environmental Science and Information Application Technology (ESIAT 2011).
- Thakur, S.; Negi, V.S.; Dhyani, R.; Satish, K.V.; Bhatt, I.D. Vulnerability assessments of mountain forest ecosystems: A global synthesis. Trees, Forests and People 2021, 6, 100156. [Google Scholar] [CrossRef]
- Talubo, J.P.; Morse, S.; Saroj, D. Whose resilience matters? A socio-ecological systems approach to defining and assessing disaster resilience for small islands. Environmental Challenges 2022, 7, 100511. [Google Scholar] [CrossRef]
- Camacho, C.; Bower, P.; Webb, R.T.; Munford, L. Measurement of community resilience using the Baseline Resilience Indicator for Communities (BRIC) framework: A systematic review. International Journal of Disaster Risk Reduction 2023, 95, 103870. [Google Scholar] [CrossRef]
- Selwyn, M.; Lazaro-Gonzalez, A.; Lloret, F.; Rey-Benayas, J.M.; Hampe, A.; Brotons, Ll.; Pino, J.; Espelta, J.M. Quantifying the impacts of rewilding on ecosystem resilience to disturbances: A global meta-analysis. Journal of Environmental Management 2025, 375, 124360. [Google Scholar] [CrossRef]
- Behboudian, M.; Anamaghi, S.; Mahjouri, N.; Kerachian, R. Enhancing the resilience of ecosystem services under extreme events in socio-hydrological systems: A spatio-temporal analysis. Journal of Cleaner Production 2023, 397, 136437. [Google Scholar] [CrossRef]
- Behboudian, M.; Emami-Skardi, M.j.; Santos-Ferreira, C.S.; Wang-Erlandsson, L.; Anamaghi, S.; Halbac-Cotoara-Zamfir, R.; Kalantari, Z. Social resilience of tropical forest ecosystems: A systematic review of core principles and their application. Journal of Environmental Management 2025, 394, 127319. [Google Scholar] [CrossRef]
- Jacob, L.M.; Irvine, K.N.; Beza, B.B.; Chua, L.H.C. Adaptive resilience in wetlands: An integrative review of principles, research gaps, and ways forward for better adaptive management. Ecological Engineering 2025, 220, 107720. [Google Scholar] [CrossRef]
- Biggs, R.; Schlüter, M.; Biggs, D.; Bohensky, E.L.; BurnSilver, S.; Cundill, G. Toward principles for enhancing the resilience of ecosystem services. Ann u. Rev. Environ. Resour. 2012, 37(1), 421–448. [Google Scholar] [CrossRef]
- Behboudian, M.; Anamaghi, S.; Kerachian, R.; Kalantari, Z. Comparison of three group decision-making frameworks for evaluating resilience time series of water resources systems under uncertainty. Ecol. Indic. 2024, 158, 111269. [Google Scholar] [CrossRef]
- Nikinmaa, L.; Lindner, M.; Cantarello, E.; Gardiner, B.; Jacobsen, J.B.; Jump, A.S.; Parra, C.; Plieninger, T.; Schuck, A.; Seidl, R.; Timberlake, T. A balancing Act: principles, criteria and indicator framework to operationalize social-ecological resilience of forests. J. Environ. Manag. 2023, 331, 117039. [Google Scholar] [CrossRef]
- Sakellariou, S.; Sfougaris, A.; Christopoulou, O.; Tampekis, S. Spatial resilience to wildfires through the optimal deployment of firefighting resources: impact of topography on initial attack effectiveness. Int. J. Disaster Risk Sci. 2023, 14(1), 98–112. [Google Scholar] [CrossRef]
- Montefalcone, M.; Parravicini, V.; Bianchi, C.N. Quantification of coastal ecosystems’ resilience; Genova University: Genova Italy, 2011. [Google Scholar]
- Maestas, J.D.; Campbell, S.B.; Chambers, J.C.; Pellant, M.; Miller, R.F. Tapping Soil Survey Information for Rapid Assessment of Sagebrush Ecosystem Resilience and Resistance. Rangelands 2016, 38(3), 120–128. [Google Scholar] [CrossRef]
- Wei, W.; Li, H.; Wang, B.; Zhang, K. Rain- and water-use efficiencies of a shrub ecosystem and its resilience to drought in the Central Asia region during 2000 - 2014. Global Ecology and Conservation 2019, 17, e00595. [Google Scholar] [CrossRef]
- Murgatroyd, A.; Hall, J.W. Regulation of freshwater use to restore ecosystem’s resilience. Climate Risk Management 2021, 32, 100303. [Google Scholar] [CrossRef]
- Bellanthudawa, B.K.A.; Chang, N.B. Hurricane Irma impact on biophysical and biochemical features of canopy vegetation in the Santa Fe River Basin, Florida. International Journal of Applied Earth Observations and Geoinformation 2021, 102, 102427. [Google Scholar] [CrossRef]
- Thakur, S.; Negi, V.S.; Dhyani, R.; Satish, K.V.; Bhatt, I.D. Vulnerability assessments of mountain forest ecosystems: A global synthesis. Trees, Forests and People 2021, 6, 100156. [Google Scholar] [CrossRef]
- Gottesman, B.L.; Olson, J.C.; Yang, S.; Acevedo-Charry, O.; Francomano, D.; Martinez, F.A.; Appeldoorn, R.S.; Mason, D.M.; Weil, E.; Pijanowski, B.C. What does resilience sound like? Coral reef and dry forest acoustic communities respond differently to Hurricane Maria. Ecological Indicators 2021, 126, 107635. [Google Scholar] [CrossRef]
- Borchert, S.M.; Osland, M.J.; Enwright, N.M.; Griffith, K.T. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. J Appl Ecol. 2018, 55, 2876–2887. [Google Scholar] [CrossRef]
- Marcos, B.; Gonçalves, J.; Alcaraz-Segura, D.; Cunha, M.; Honrado, J.P. Assessing the resilience of ecosystem functioning to wildfires using satellite-derived metrics of post-fire trajectories. Remote Sensing of Environment 2023, 286, 113441. [Google Scholar] [CrossRef]
- McClanahan, TR; Donner, SD; Maynard, JA; MacNeil, MA; Graham, NAJ; et al. Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. PLoS ONE 2012, 7(8), e42884. [Google Scholar] [CrossRef]
- Wollstein, K.; Creutzburg, M.K.; Dunn, C.; Johnson, D.D.; O’Connor, C.; Boyd, C.S. Toward integrated fire management to promote ecosystem resilience. Rangelands 2022, 44(3), 227–234. [Google Scholar] [CrossRef]
- Bai, H.; Weng, L. Ecological security pattern construction and zoning along the China-Laos Railway based on the potential-connectedness-resilience framework. Ecological Indicators 2023, 146, 109773. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Wang, P.; Zhou, L.; Sun, Y. Estimating the nonlinear response of landscape patterns to ecological resilience using a random forest algorithm: Evidence from the Yangtze River Delta. Ecological Indicators 2023, 153, 110409. [Google Scholar] [CrossRef]
- Townend, B.I.H.; French, J.R.; Nicholls, R.J.; Brownd, S.; Carpenter, S.; Haigha, I.D.; Hill, C.T.; Lazarus, E.; Penning-Rowsell, E.C.; Thompson, C.E.L.; Tompkins, E.L. Operationalising coastal resilience to flood and erosion hazard: A demonstration for England. Science of the Total Environment 2021, 783, 146880. [Google Scholar] [CrossRef]
- Liu, L.; Xue, J.; Mao, D.; Chang, J.; Wang, S.; Li, X. An integrative socio-hydrological resilience assessment and management implications for oasis sustainability in arid regions, Northwest China. Journal of Hydrology: Regional Studies 2023, 47, 101389. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Peng, L. Exploring Social-Ecological System Resilience in South China Karst: quantification, interaction and policy implication. 2024. [Google Scholar] [CrossRef]
- Mustajoki, J.; Marttunen, M. Improving resilience of reservoir operation in the context of watercourse regulation in Finland. EURO J Decis Process 2019, 7, 359–386. [Google Scholar] [CrossRef]
- Williams, T. G.; Guikema, S. D.; Brown, D. G.; Agrawal, A. Resilience and equity: Quantifying the distributional effects of resilienceenhancing strategies in a smallholder agricultural system. Agricultural Systems 2020. [Google Scholar] [CrossRef]
- Qasim, S.; Qasim, M.; Shrestha, R.P. A survey on households’ resilience to landslide hazard in Murree hills of Pakistan. Environmental Challenges 2021, 4, 100202. [Google Scholar] [CrossRef]
- Rozer, V.; Surminski, S.; Laurien, F.; McQuistan, C.; Mechler, R. Multiple resilience dividends at the community level: A comparative study of disaster risk reduction interventions in different countries. Climate Risk Management 2023, 40, 100518. [Google Scholar] [CrossRef]
- Gerges, F.; Assaad, R.H.; Nassif, H.; Bou-Zeidd, E.; Boufadel, M.C. A perspective on quantifying resilience: Combining community and infrastructure capitals. Science of the Total Environment 2023, 859, 160187. [Google Scholar] [CrossRef] [PubMed]
- van de Lindt, J.W.; Kruse, J.; Cox, D.T.; Gardoni, P.; Lee, J.S.; Padgett, J.; McAllister, T.P.; Barbosa, A.; Cutler, H.; Van Zandt, S.; Rosenheim, N.; Navarro, C.M.; Sutley, E.; Hamideh, S. The interdependent networked community resilience modeling environment (IN-CORE). Resilient Cities and Structures 2023, 2, 57–66. [Google Scholar] [CrossRef]
- Kapruwan, R.; Kumar-Saksham, A.; Bhadoriya, V.; Kumar, C.; Goyal, Y.; Pandey, R. Household livelihood resilience of pastoralists and smallholders to climate change in Western Himalaya, India. Heliyon 2024, 10, e24133. [Google Scholar] [CrossRef] [PubMed]
- Paszkowski, A.; Laurien, F.; Mechler, R.; Hall, J. Quantifying community resilience to riverine hazards in Bangladesh. Global Environmental Change 2024, 84, 102778. [Google Scholar] [CrossRef]
- Visave, J.; Aldrich, D.P. The role of social capital in strengthening community resilience against floods: A case study of Mumbai, India. Climate Risk Management 2025, 47, 100685. [Google Scholar] [CrossRef]
- Islam, Md.A.; Paull, D.J.; Griffin, A.L.; Murshed, S. Assessing ecosystem resilience to a tropical cyclone based on ecosystem service supply proficiency using geospatial techniques and social responses in coastal Bangladesh. International Journal of Disaster Risk Reduction 2020, 49, 101667. [Google Scholar] [CrossRef]
- Dodd, R. J.; Chadwick, D. R.; Hill, P. W.; Hayes, F.; Sánchez-Rodríguez, A. R.; Gwynn-Jones, D.; Smart, S. M.; Jones, D. L. Resilience of ecosystem service delivery in grasslands in response to single and compound extreme weather events. Science of Total Environment 2023. [Google Scholar] [CrossRef]
- Sunkur, R.; Kantamaneni, K.; Bokhoree, Ch.; Rathnayake, U.; Fernando, M. Modelling mangrove dynamics in Mauritius: Implications for conservation and climate resilience. Journal for Nature Conservation 2025, 85, 126864. [Google Scholar] [CrossRef]
- Ruiz-Agudelo, C.A.; Hurtado-Bustos, S.L.; Parrado-Moreno, C.A. Modeling interactions among multiple ecosystem services. A critical review. Ecological Modelling. Volume 2020, Volume 429, 109103. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; Raskin, R.G.; Sutton, P.; van den Belt, M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Berkes, F.; Colding, J.; Folke, C. Navigating Social-Ecological Systems: Building Resilience for Complexity and Change; Cambridge University Press: Cambridge, 2008. [Google Scholar]
- Latour, B. Reassembling the Social: An Introduction to Actor-network theory; Oxford University Press: Oxford, 2005. [Google Scholar]
- Dardonville, M.; Bockstaller, C.; Therond, O. Review of quantitative evaluations of the resilience, vulnerability, robustness and adaptive capacity of temperate agricultural systems. Journal of Cleaner Production 2021, 286, 125456. [Google Scholar] [CrossRef]
- Wassie, S.B.; Mengistu, D.A.; Birlie, A.B. Agricultural livelihood resilience in the face of recurring droughts: Empirical evidence from northeast Ethiopia. Heliyon 2023, 9, e16422. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Peña, F.; Yoder, L. Agrobiodiversity and smallholder resilience: A scoping review. Journal of Environmental Management 2024, 351, 119882. [Google Scholar] [CrossRef]
- Carper, J.M.; Alizadeh, M.R.; Adamowski, J.F.; Inam, A. Climate variability in agroecosystems: A quantitative assessment of stakeholder-defined policies for enhanced socio-ecological resilience. Agricultural Systems 2022, 201, 103416. [Google Scholar] [CrossRef]
- Carper, J. M.; Alizadeh, M. R.; Adamowski, J. F.; Inam, A.; Malard, J. J. Quantifying the transient shock response of dynamic agroecosystem variables for improved socio-environmental resilience. Ecology and Society 2021, 26(2), 17. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Chen, Z.; Zhang, S. Multi-criteria assessment of the resilience of ecological function areas in China with a focus on ecological restoration. Ecological Indicators 2020. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, X.; Chen, H.; Shi, Q. Spatio-temporal evolution of the social-ecological landscape resilience and management zoning in the loess hill and gully region of China. Environmental Development 2021. [Google Scholar] [CrossRef]
- Zhou, J.; Hou, Q.; Li, W. Spatial resilience assessment and optimization of small watershed based on complex network theory. Ecological Indicators 2022, 145, 109730. [Google Scholar] [CrossRef]
- Zamora-Maldonado, H.C.; Avila-Foucat, V.S.; Sánchez-Sotomayor, V.G.; Lee, R. Social-ecological Resilience Modeling: Water Stress Effects in the Bighorn Sheep Management System in Baja California Sur, Mexico. Ecological Complexity 2021, 45, 100884. [Google Scholar] [CrossRef]
- Renschler, C. S.; Frazier, A. E.; Arendt, L. A.; Cimellaro, G. P.; Reinhorn, A. M.; Bruneau, M. A Framework for Defining and Measuring Resilience at the Community Scale: the Peoples Resilience Framework; MCEER Buffalo: Buffalo, NY, 2010. [Google Scholar]
- Dakos, V.; Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proceedings of the National Academy of Sciences, USA 2014, 111, 17546–17551. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Pinillos, M.; Dakos, V.; Kefi, S. Ecological dynamic regimes: A key concept for assessing ecological resilience. Biological Conservation 2024, 289, 110409. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
