Preprint
Article

This version is not peer-reviewed.

Neural Network Approach for Wideband RCS Computation with Wide Incident Angles via Method of Moments

Submitted:

30 January 2026

Posted:

30 January 2026

You are already at the latest version

Abstract
In this paper, we present a deep neural network–based approach for computing radar cross section (RCS) over a wide frequency band and a broad range of incident angles.The proposed network, termed WBRCS-Net, is designed to converge to the solution of the method of moments (MoM) formulation by minimizing a mean-squared residual loss without explicitly solving the MoM linear system, thereby avoiding the numerical instabilities commonly encountered in conventional iterative solvers. Moreover, by using only the frequency and incident angle as inputs, WBRCS-Net enables wideband RCS prediction over a broad range of incident angles while substantially simplifying the network architecture. The performance of WBRCS-Net is evaluated on perfectly electrically conducting (PEC) spheres and cubes and compared with the Maehly approximation based on Chebyshev polynomials. Experimental results show that, once trained, WBRCS-Net provides accurate and stable wideband RCS computations over a wide range of incident angles with instantaneous inference speed, highlighting a key advantage of the neural network–based approach.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated