Submitted:
29 January 2026
Posted:
30 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. The Target: Unlocking B and T Cell Epitopes with Machine Learning
2.1. Structural Vaccinology: From Sequence Motifs to 3D Graphs
2.2. T-Cell Vaccinology: Decoding HLA Presentation
2.3. The Immuno-Oncology Frontier: AI-Driven Neoantigen Discovery
2.4. Generative Design and the Future of Target Optimization
3. AI in Immuno-Pharmacology: Intelligent Delivery Systems and Adjuvant Optimization
3.1. Adjuvant Discovery: Breaking Tolerance with GNNs and Bayesian Optimization
3.2. Lipid Nanoparticle (LNP) Engineering: Deep Learning for mRNA Delivery
3.3. Pharmacokinetics and Predictive Toxicology: Reducing the Attrition Rate
3.4. The Convergence: Formulation-as-a-Service (FaaS)
4. Deep Learning Paradigms in Epitope Discovery
4.1. Navigating the Challenges of Translational Science
4.2. The Evolution of Feature-Based and Graph-Based Models
5. AI-Driven Clinical Optimization: From In-Silico Simulation to Personalized Trials
5.1. Digital Twins and In-Silico Immune Modeling
5.2. Adaptive Trial Designs and Synthetic Control Arms (SCA)
5.3. Biomarker Intelligence and Patient Stratification
5.4. Regulatory Landscape: The FDA Modernization Act 2.0
6. Future Directions, Ethical Considerations, and Global Deployment
6.1. Explainable AI (XAI) and the Regulatory White-Box Paradigm
6.2. Global Health Equity: Frugal AI and Decentralized Manufacturing
6.3. The Rise of Agentic AI and Inverse Vaccinology

7. Limitations and Failure Modes of AI-Driven Vaccinology
7.1. Data Bias and Incomplete Immunological Representation
7.2. Prediction Does Not Guarantee Immunogenicity
7.3. Overfitting and Benchmark Inflation
7.4. Structural Uncertainty and Model Assumptions
7.5. Delivery and Context Dependence
7.6. Regulatory and Interpretability Constraints
8. Conclusion: The AI-Driven Era of Precision Immunology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ML | Machine Learning |
| DL | Deep Learning |
| CNNs | Convolutional Neural Networks |
| RNNs | Recurrent Neural Networks |
| GNNs | Graph Neural Networks |
| CoP | Correlates of Protection |
| NLP | Natural Language Processing |
| VO | Vaccine Ontology |
| AUROC | Area Under the Receiver Operating Characteristic Curve |
| HLA | Human Leukocyte Antigen |
| MHC | Major Histocompatibility Complex |
References
- Benn, C.S.; Fisker, A.B.; Rieckmann, A.; Sørup, S.; Aaby, P. Vaccinology: Time to Change the Paradigm? Lancet Infect. Dis. 2020, 20, e274–e283. [Google Scholar] [CrossRef] [PubMed]
- Light, D.W.; Lexchin, J. The Costs of Coronavirus Vaccines and Their Pricing. J. R. Soc. Med. 2021, 114, 502–504. [Google Scholar] [CrossRef]
- Villanueva-Flores, F.; Sanchez-Villamil, J.I.; Garcia-Atutxa, I. AI-Driven Epitope Prediction: A System Review, Comparative Analysis, and Practical Guide for Vaccine Development. NPJ Vaccines 2025, 10, 207. [Google Scholar] [CrossRef]
- Villanueva-Flores, F.; Sanchez-Villamil, J.I.; Garcia-Atutxa, I. AI-Driven Epitope Prediction: A System Review, Comparative Analysis, and Practical Guide for Vaccine Development. NPJ Vaccines 2025, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Flores, F.; Sanchez-Villamil, J.I.; Garcia-Atutxa, I. AI-Driven Epitope Prediction: A System Review, Comparative Analysis, and Practical Guide for Vaccine Development. NPJ Vaccines 2025, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Flores, F.; Sanchez-Villamil, J.I.; Garcia-Atutxa, I. Publisher Correction: AI-Driven Epitope Prediction: A Systematic Review, Comparative Analysis, and Practical Guide for Vaccine Development. NPJ Vaccines 2025, 10, 209. [Google Scholar] [CrossRef]
- Bravi, B. Development and Use of Machine Learning Algorithms in Vaccine Target Selection. NPJ Vaccines 2024, 9, 15. [Google Scholar] [CrossRef]
- da Silva, O.L.T.; da Silva, M.K.; Rodrigues-Neto, J.F.; Santos Lima, J.P.M.; Manzoni, V.; Akash, S.; Fulco, U.L.; Bourhia, M.; Dawoud, T.M.; Nafidi, H.-A.; et al. Advancing Molecular Modeling and Reverse Vaccinology in Broad-Spectrum Yellow Fever Virus Vaccine Development. Sci. Rep. 2024, 14, 10842. [Google Scholar] [CrossRef]
- Niu, J.; Deng, R.; Dong, Z.; Yang, X.; Xing, Z.; Yu, Y.; Kang, J. Mapping the Landscape of AI and ML in Vaccine Innovation: A Bibliometric Study. Hum. Vaccines Immunother. 2025, 21, 2501358. [Google Scholar] [CrossRef]
- Banday, A.H.; Manzoor, M.M.; Nissar, U.; Jaleel, S. From Neoantigen Discovery to Immune-Checkpoint Synergy: Peptide Cancer Vaccines as Precision Tools for Personalised Cancer Therapy. Scand. J. Immunol. 2026, 103, e70084. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.A.P.M.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tak-Yin Tsang, O.; et al. Systems Biological Assessment of Immunity to Mild versus Severe COVID-19 Infection in Humans. Science 2020, 369, 1210–1220. [Google Scholar] [CrossRef]
- Ciani, O.; Manyara, A.M.; Davies, P.; Stewart, D.; Weir, C.J.; Young, A.E.; Blazeby, J.; Butcher, N.J.; Bujkiewicz, S.; Chan, A.-W.; et al. A Framework for the Definition and Interpretation of the Use of Surrogate Endpoints in Interventional Trials. EClinicalMedicine 2023, 65, 102283. [Google Scholar] [CrossRef]
- Rubinstein, N.D.; Mayrose, I.; Pupko, T. A Machine-Learning Approach for Predicting B-Cell Epitopes. Mol. Immunol. 2009, 46, 840–847. [Google Scholar] [CrossRef]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving Sequence-Based B-Cell Epitope Prediction Using Conformational Epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Raghava, G.P.S. Prediction of Continuous B-Cell Epitopes in an Antigen Using Recurrent Neural Network. Proteins 2006, 65, 40–48. [Google Scholar] [CrossRef]
- da Silva, B.M.; Myung, Y.; Ascher, D.B.; Pires, D.E.V. epitope3D: A Machine Learning Method for Conformational B-Cell Epitope Prediction. Brief. Bioinform. 2022, 23, bbab423. [Google Scholar] [CrossRef]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving Sequence-Based B-Cell Epitope Prediction Using Conformational Epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Raghava, G.P.S. Prediction of Continuous B-Cell Epitopes in an Antigen Using Recurrent Neural Network. Proteins 2006, 65, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, N.D.; Mayrose, I.; Pupko, T. A Machine-Learning Approach for Predicting B-Cell Epitopes. Mol. Immunol. 2009, 46, 840–847. [Google Scholar] [CrossRef]
- Villanueva-Flores, F.; Sanchez-Villamil, J.I.; Garcia-Atutxa, I. AI-Driven Epitope Prediction: A System Review, Comparative Analysis, and Practical Guide for Vaccine Development. NPJ Vaccines 2025, 10, 207. [Google Scholar] [CrossRef]
- Villanueva-Flores, F.; Sanchez-Villamil, J.I.; Garcia-Atutxa, I. AI-Driven Epitope Prediction: A System Review, Comparative Analysis, and Practical Guide for Vaccine Development. NPJ Vaccines 2025, 10, 207. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef]
- Andreatta, M.; Nielsen, M. Gapped Sequence Alignment Using Artificial Neural Networks: Application to the MHC Class I System. Bioinforma. Oxf. Engl. 2016, 32, 511–517. [Google Scholar] [CrossRef]
- O’Donnell, T.J.; Rubinsteyn, A.; Laserson, U. MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing. Cell Syst. 2020, 11, 42–48.e7. [Google Scholar] [CrossRef]
- O’Donnell, T.J.; Rubinsteyn, A.; Bonsack, M.; Riemer, A.B.; Laserson, U.; Hammerbacher, J. MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Syst. 2018, 7, 129–132.e4. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Lundegaard, C.; Blicher, T.; Lamberth, K.; Harndahl, M.; Justesen, S.; Røder, G.; Peters, B.; Sette, A.; Lund, O.; et al. NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence. PloS One 2007, 2, e796. [Google Scholar] [CrossRef]
- Bassani-Sternberg, M.; Chong, C.; Guillaume, P.; Solleder, M.; Pak, H.; Gannon, P.O.; Kandalaft, L.E.; Coukos, G.; Gfeller, D. Deciphering HLA-I Motifs across HLA Peptidomes Improves Neo-Antigen Predictions and Identifies Allostery Regulating HLA Specificity. PLoS Comput. Biol. 2017, 13, e1005725. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, A.; Zanetti, M. Neoantigen Prediction and the Need for Validation. Nat. Biotechnol. 2017, 35, 815–817. [Google Scholar] [CrossRef] [PubMed]
- Karosiene, E.; Rasmussen, M.; Blicher, T.; Lund, O.; Buus, S.; Nielsen, M. NetMHCIIpan-3.0, a Common Pan-Specific MHC Class II Prediction Method Including All Three Human MHC Class II Isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics 2013, 65, 711–724. [Google Scholar] [CrossRef]
- Wirth, T.C.; Kühnel, F. Neoantigen Targeting-Dawn of a New Era in Cancer Immunotherapy? Front. Immunol. 2017, 8, 1848. [Google Scholar] [CrossRef]
- Gumpert, N.; Sagie, S.; Arnedo-Pac, C.; Babu, T.; Weller, C.; Gonzalez-Perez, A.; Wang, Y.; Michel Todó, L.; Levy, R.; Chen, X.; et al. Recurrent Immunogenic Neoantigens and Their Cognate T-Cell Receptors in Treatment-Resistant Metastatic Prostate Cancer. Cancer Discov. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, Z.; Dai, X.; Zhang, X.; Wang, X. Research Progress of Neoantigen-Based Dendritic Cell Vaccines in Pancreatic Cancer. Front. Immunol. 2023, 14, 1104860. [Google Scholar] [CrossRef]
- Deleuran, S.N.; Nielsen, M. NetTCR-Struc, a Structure Driven Approach for Prediction of TCR-pMHC Interactions. Front. Immunol. 2025, 16, 1616328. [Google Scholar] [CrossRef]
- Hashempour, A.; Khodadad, N.; Akbarinia, S.; Ghasabi, F.; Ghasemi, Y.; Nazar, M.M.K.A.; Falahi, S. Reverse Vaccinology Approaches to Design a Potent Multiepitope Vaccine against the HIV Whole Genome: Immunoinformatic, Bioinformatics, and Molecular Dynamics Approaches. BMC Infect. Dis. 2024, 24, 873. [Google Scholar] [CrossRef]
- Watson, J.L.; Juergens, D.; Bennett, N.R.; Trippe, B.L.; Yim, J.; Eisenach, H.E.; Ahern, W.; Borst, A.J.; Ragotte, R.J.; Milles, L.F.; et al. De Novo Design of Protein Structure and Function with RFdiffusion. Nature 2023, 620, 1089–1100. [Google Scholar] [CrossRef]
- Hajnik, R.L.; Plante, J.A.; Liang, Y.; Alameh, M.-G.; Tang, J.; Bonam, S.R.; Zhong, C.; Adam, A.; Scharton, D.; Rafael, G.H.; et al. Dual Spike and Nucleocapsid mRNA Vaccination Confer Protection against SARS-CoV-2 Omicron and Delta Variants in Preclinical Models. Sci. Transl. Med. 2022, 14, eabq1945. [Google Scholar] [CrossRef]
- Xiao, W.; Jiang, W.; Chen, Z.; Huang, Y.; Mao, J.; Zheng, W.; Hu, Y.; Shi, J. Advance in Peptide-Based Drug Development: Delivery Platforms, Therapeutics and Vaccines. Signal Transduct. Target. Ther. 2025, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef] [PubMed]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef]
- Clifford, J.N.; Høie, M.H.; Deleuran, S.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-3.0: Improved B-Cell Epitope Prediction Using Protein Language Models. Protein Sci. Publ. Protein Soc. 2022, 31, e4497. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kim, D. B Cell Epitope Prediction by Capturing Spatial Clustering Property of the Epitopes Using Graph Attention Network. Sci. Rep. 2024, 14, 27496. [Google Scholar] [CrossRef]
- Weber, A.; Born, J.; Rodriguez Martínez, M. TITAN: T-Cell Receptor Specificity Prediction with Bimodal Attention Networks. Bioinforma. Oxf. Engl. 2021, 37, i237–i244. [Google Scholar] [CrossRef]
- Armstrong, K.M.; Piepenbrink, K.H.; Baker, B.M. Conformational Changes and Flexibility in T-Cell Receptor Recognition of Peptide-MHC Complexes. Biochem. J. 2008, 415, 183–196. [Google Scholar] [CrossRef]
- Shahin, M.H.; Desai, P.; Terranova, N.; Guan, Y.; Helikar, T.; Lobentanzer, S.; Liu, Q.; Lu, J.; Madhavan, S.; Mo, G.; et al. AI-Driven Applications in Clinical Pharmacology and Translational Science: Insights From the ASCPT 2024 AI Preconference. Clin. Transl. Sci. 2025, 18, e70203. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Feng, Y.; Li, H. AI-Driven Immunotherapy: Synergizing with Radiotherapy to Reconfigure the Tumor Microenvironment and Treatment Landscape. Front. Pharmacol. 2025, 16, 1747638. [Google Scholar] [CrossRef]
- Zheng, Y.; He, Y. VaxjoGNN: A Graph Neural Network for Ontology-Grounded Vaccine Adjuvant Recommendation. BioRxiv Prepr. Serv. Biol. 2025, 2025, 11.27.690985. [Google Scholar] [CrossRef]
- Muhammad, S.; Li, B.; Zhong, W.; Siddiqui, H.; Zhao, Y.; Wang, J. AI-Enhanced Synergistic Chemo-Immunotherapy: From Mechanistic Insights to Clinical Translation. Crit. Rev. Oncol. Hematol. 2026, 217, 105064. [Google Scholar] [CrossRef]
- Wages, N.A.; Slingluff, C.L. Flexible Phase I-II Design for Partially Ordered Regimens with Application to Therapeutic Cancer Vaccines. Stat. Biosci. 2020, 12, 104–123. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, S.; Cui, H.; Chen, J.; Xu, S.; Gong, F.; Golubovic, A.; Zhou, M.; Wang, K.C.; Varley, A.; et al. AGILE Platform: A Deep Learning Powered Approach to Accelerate LNP Development for mRNA Delivery. Nat. Commun. 2024, 15, 6305. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, R.; He, S.; Zhang, C.; Liu, W.-C.; Song, H.; Liu, S.; Nan, K. High-Throughput, AI-Assisted Design and Optimization of Lipid Nanoparticles for Drug Delivery. J. Control. Release Off. J. Control. Release Soc. 2025, 391, 114573. [Google Scholar] [CrossRef]
- Witten, J.; Raji, I.; Manan, R.S.; Beyer, E.; Bartlett, S.; Tang, Y.; Ebadi, M.; Lei, J.; Nguyen, D.; Oladimeji, F.; et al. Artificial Intelligence-Guided Design of Lipid Nanoparticles for Pulmonary Gene Therapy. Nat. Biotechnol. 2025, 43, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
- Gautam, V.; Gupta, R.; Gupta, D.; Ruhela, A.; Mittal, A.; Mohanty, S.K.; Arora, S.; Gupta, R.; Saini, C.; Sengupta, D.; et al. deepGraphh: AI-Driven Web Service for Graph-Based Quantitative Structure-Activity Relationship Analysis. Brief. Bioinform. 2022, 23, bbac288. [Google Scholar] [CrossRef]
- Koirala, M.; Yan, L.; Mohamed, Z.; DiPaola, M. AI-Integrated QSAR Modeling for Enhanced Drug Discovery: From Classical Approaches to Deep Learning and Structural Insight. Int. J. Mol. Sci. 2025, 26, 9384. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Akhtar, J.; Zhang, X.; Sun, L.; Guan, S.; Li, X.; Chen, G.; Liu, J.; Jeon, H.-N.; Kim, M.S.; et al. Comprehensive Strategies of Machine-Learning-Based Quantitative Structure-Activity Relationship Models. iScience 2021, 24, 103052. [Google Scholar] [CrossRef]
- Monroig-Bosque, P. del C.; Rivera, C.A.; Calin, G.A. MicroRNAs in Cancer Therapeutics: From the Bench to the Bedside. Expert Opin. Biol. Ther. 2015, 15, 1381–1385. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Teke, J.; Fapohunda, O.; Weerasinghe, K.; Usman, S.O.; Ige, A.O.; Clement David-Olawade, A. Leveraging Artificial Intelligence in Vaccine Development: A Narrative Review. J. Microbiol. Methods 2024, 224, 106998. [Google Scholar] [CrossRef]
- Lu, L.; Lu, X.; Luo, W. Personalized Cancer Vaccines: Current Advances and Emerging Horizons. Vaccines 2025, 13, 1231. [Google Scholar] [CrossRef]
- Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M. AAindex: Amino Acid Index Database, Progress Report 2008. Nucleic Acids Res. 2008, 36, D202–205. [Google Scholar] [CrossRef]
- Qi, Y.; Zheng, P.; Huang, G. DeepLBCEPred: A Bi-LSTM and Multi-Scale CNN-Based Deep Learning Method for Predicting Linear B-Cell Epitopes. Front. Microbiol. 2023, 14, 1117027. [Google Scholar] [CrossRef]
- Olawade, D.B.; Teke, J.; Fapohunda, O.; Weerasinghe, K.; Usman, S.O.; Ige, A.O.; Clement David-Olawade, A. Leveraging Artificial Intelligence in Vaccine Development: A Narrative Review. J. Microbiol. Methods 2024, 224, 106998. [Google Scholar] [CrossRef]
- Shao, X.M.; Bhattacharya, R.; Huang, J.; Sivakumar, I.K.A.; Tokheim, C.; Zheng, L.; Hirsch, D.; Kaminow, B.; Omdahl, A.; Bonsack, M.; et al. High-Throughput Prediction of MHC Class I and II Neoantigens with MHCnuggets. Cancer Immunol. Res. 2020, 8, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Zheng, Y.; Wang, C.; Ding, Y. An Attention Based Bidirectional LSTM Method to Predict the Binding of TCR and Epitope. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 3272–3280. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Dong, J.; Wei, J.; Guo, X.; Wang, G.; Xu, M.; Zhao, A. Enhanced Immune Responses in Mice by Combining the Mpox Virus B6R-Protein and Aluminum Hydroxide-CpG Vaccine Adjuvants. Vaccines 2024, 12, 776. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wei, Z.; Yuan, Q.; Chen, S.; Yu, W.; Lu, Y.; Gao, J.; Yang, Y. Identifying B-Cell Epitopes Using AlphaFold2 Predicted Structures and Pretrained Language Model. Bioinforma. Oxf. Engl. 2023, 39, btad187. [Google Scholar] [CrossRef]
- Hu, R.-S.; Gu, K.; Ehsan, M.; Abbas Raza, S.H.; Wang, C.-R. Transformer-Based Deep Learning Enables Improved B-Cell Epitope Prediction in Parasitic Pathogens: A Proof-of-Concept Study on Fasciola Hepatica. PLoS Negl. Trop. Dis. 2025, 19, e0012985. [Google Scholar] [CrossRef]
- Machaca, V.; Goyzueta, V.; Cruz, M.G.; Sejje, E.; Pilco, L.M.; López, J.; Túpac, Y. Transformers Meets Neoantigen Detection: A Systematic Literature Review. J. Integr. Bioinforma. 2024, 21, 20230043. [Google Scholar] [CrossRef]
- Tokar, T.; Pastrello, C.; Abovsky, M.; Rahmati, S.; Jurisica, I. miRAnno-Network-Based Functional microRNA Annotation. Bioinforma. Oxf. Engl. 2022, 38, 592–593. [Google Scholar] [CrossRef]
- Darmawan, J.T.; Leu, J.-S.; Avian, C.; Ratnasari, N.R.P. MITNet: A Fusion Transformer and Convolutional Neural Network Architecture Approach for T-Cell Epitope Prediction. Brief. Bioinform. 2023, 24, bbad202. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kim, D. B Cell Epitope Prediction by Capturing Spatial Clustering Property of the Epitopes Using Graph Attention Network. Sci. Rep. 2024, 14, 27496. [Google Scholar] [CrossRef]
- Theiler, J.; Yoon, H.; Yusim, K.; Picker, L.J.; Fruh, K.; Korber, B. Epigraph: A Vaccine Design Tool Applied to an HIV Therapeutic Vaccine and a Pan-Filovirus Vaccine. Sci. Rep. 2016, 6, 33987. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wei, Z.; Yuan, Q.; Chen, S.; Yu, W.; Lu, Y.; Gao, J.; Yang, Y. Identifying B-Cell Epitopes Using AlphaFold2 Predicted Structures and Pretrained Language Model. Bioinforma. Oxf. Engl. 2023, 39, btad187. [Google Scholar] [CrossRef] [PubMed]
- Thrift, W.J.; Perera, J.; Cohen, S.; Lounsbury, N.W.; Gurung, H.R.; Rose, C.M.; Chen, J.; Jhunjhunwala, S.; Liu, K. Graph-pMHC: Graph Neural Network Approach to MHC Class II Peptide Presentation and Antibody Immunogenicity. Brief. Bioinform. 2024, 25, bbae123. [Google Scholar] [CrossRef]
- Seyran, M. Artificial Intelligence and Clinical Data Suggest the T Cell-Mediated SARS-CoV-2 Nonstructural Protein Intranasal Vaccines for Global COVID-19 Immunity. Vaccine 2022, 40, 4296–4300. [Google Scholar] [CrossRef]
- Kovalchik, K.A.; Hamelin, D.J.; Kubiniok, P.; Bourdin, B.; Mostefai, F.; Poujol, R.; Paré, B.; Simpson, S.M.; Sidney, J.; Bonneil, É.; et al. Machine Learning-Enhanced Immunopeptidomics Applied to T-Cell Epitope Discovery for COVID-19 Vaccines. Nat. Commun. 2024, 15, 10316. [Google Scholar] [CrossRef]
- He, L.; Zhu, J. Computational Tools for Epitope Vaccine Design and Evaluation. Curr. Opin. Virol. 2015, 11, 103–112. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhu, J. Computational Tools for Epitope Vaccine Design and Evaluation. Curr. Opin. Virol. 2015, 11, 103–112. [Google Scholar] [CrossRef]
- He, L.; Zhu, J. Computational Tools for Epitope Vaccine Design and Evaluation. Curr. Opin. Virol. 2015, 11, 103–112. [Google Scholar] [CrossRef]
- He, L.; Zhu, J. Computational Tools for Epitope Vaccine Design and Evaluation. Curr. Opin. Virol. 2015, 11, 103–112. [Google Scholar] [CrossRef]
- Rubinstein, N.D.; Mayrose, I.; Pupko, T. A Machine-Learning Approach for Predicting B-Cell Epitopes. Mol. Immunol. 2009, 46, 840–847. [Google Scholar] [CrossRef]
- Niu, J.; Deng, R.; Dong, Z.; Yang, X.; Xing, Z.; Yu, Y.; Kang, J. Mapping the Landscape of AI and ML in Vaccine Innovation: A Bibliometric Study. Hum. Vaccines Immunother. 2025, 21, 2501358. [Google Scholar] [CrossRef]
- Chai, Z.-L.; Qi, X.-X.; Li, R.; Luo, J.-R.; Li, C.; Shi, H.-D.; Tian, T.-T.; Shang, K.-Y.; Zhu, Y.-J.; Zhang, F.-B. Reverse Vaccinology-Driven Construction and Bioinformatics Validation of a Multi-Epitope Vaccine against Brucella Spp. Sci. Rep. 2025, 15, 36663. [Google Scholar] [CrossRef] [PubMed]
- Vaghasiya, J.; Khan, M.; Milan Bakhda, T. A Meta-Analysis of AI and Machine Learning in Project Management: Optimizing Vaccine Development for Emerging Viral Threats in Biotechnology. Int. J. Med. Inf. 2025, 195, 105768. [Google Scholar] [CrossRef]
- Anderson, L.N.; Hoyt, C.T.; Zucker, J.D.; McNaughton, A.D.; Teuton, J.R.; Karis, K.; Arokium-Christian, N.N.; Warley, J.T.; Stromberg, Z.R.; Gyori, B.M.; et al. Computational Tools and Data Integration to Accelerate Vaccine Development: Challenges, Opportunities, and Future Directions. Front. Immunol. 2025, 16, 1502484. [Google Scholar] [CrossRef]
- Parker, J.M.; Guo, D.; Hodges, R.S. New Hydrophilicity Scale Derived from High-Performance Liquid Chromatography Peptide Retention Data: Correlation of Predicted Surface Residues with Antigenicity and X-Ray-Derived Accessible Sites. Biochemistry 1986, 25, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- Thornton, J.M.; Edwards, M.S.; Taylor, W.R.; Barlow, D.J. Location of continuous Antigenic Determinants in the Protruding Regions of Proteins. EMBO J. 1986, 5, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of Hepatitis A Virus-Neutralizing Antibody by a Virus-Specific Synthetic Peptide. J. Virol. 1985, 55, 836–839. [Google Scholar] [CrossRef]
- Roche, R.; Moussad, B.; Shuvo, M.H.; Bhattacharya, D. E(3) Equivariant Graph Neural Networks for Robust and Accurate Protein-Protein Interaction Site Prediction. PLoS Comput. Biol. 2023, 19, e1011435. [Google Scholar] [CrossRef]
- Cha, M.; Emre, E.S.T.; Xiao, X.; Kim, J.-Y.; Bogdan, P.; VanEpps, J.S.; Violi, A.; Kotov, N.A. Unifying Structural Descriptors for Biological and Bioinspired Nanoscale Complexes. Nat. Comput. Sci. 2022, 2, 243–252. [Google Scholar] [CrossRef]
- Yuan, Q.; Chen, J.; Zhao, H.; Zhou, Y.; Yang, Y. Structure-Aware Protein-Protein Interaction Site Prediction Using Deep Graph Convolutional Network. Bioinforma. Oxf. Engl. 2021, 38, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, M.T.; Aki-Yalcin, E. Homology Modeling in Drug Discovery: Overview, Current Applications, and Future Perspectives. Chem. Biol. Drug Des. 2019, 93, 12–20. [Google Scholar] [CrossRef]
- Dormitzer, P.R.; Ulmer, J.B.; Rappuoli, R. Structure-Based Antigen Design: A Strategy for next Generation Vaccines. Trends Biotechnol. 2008, 26, 659–667. [Google Scholar] [CrossRef] [PubMed]
- ValizadehAslani, T.; Shi, Y.; Ren, P.; Wang, J.; Zhang, Y.; Hu, M.; Zhao, L.; Liang, H. PharmBERT: A Domain-Specific BERT Model for Drug Labels. Brief. Bioinform. 2023, 24, bbad226. [Google Scholar] [CrossRef]
- Ong, E.; Wong, M.U.; Huffman, A.; He, Y. COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Front. Immunol. 2020, 11, 1581. [Google Scholar] [CrossRef] [PubMed]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A Server for Prediction of Protective Antigens, Tumour Antigens and Subunit Vaccines. BMC Bioinformatics 2007, 8, 4. [Google Scholar] [CrossRef]
- Suri, S.; Dakshanamurthy, S. IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design Method. Vaccines 2022, 10, 1678. [Google Scholar] [CrossRef]
- Tennant, P.W.G.; Murray, E.J.; Arnold, K.F.; Berrie, L.; Fox, M.P.; Gadd, S.C.; Harrison, W.J.; Keeble, C.; Ranker, L.R.; Textor, J.; et al. Use of Directed Acyclic Graphs (DAGs) to Identify Confounders in Applied Health Research: Review and Recommendations. Int. J. Epidemiol. 2021, 50, 620–632. [Google Scholar] [CrossRef]
- Alomair, G. Predictive Performance of Count Regression Models versus Machine Learning Techniques: A Comparative Analysis Using an Automobile Insurance Claims Frequency Dataset. PloS One 2024, 19, e0314975. [Google Scholar] [CrossRef]
- Kimura, H.; Nishikawa, M.; Kutsuzawa, N.; Tokito, F.; Kobayashi, T.; Kurniawan, D.A.; Shioda, H.; Cao, W.; Shinha, K.; Nakamura, H.; et al. Advancements in Microphysiological Systems: Exploring Organoids and Organ-on-a-Chip Technologies in Drug Development -Focus on Pharmacokinetics Related Organs. Drug Metab. Pharmacokinet. 2025, 60, 101046. [Google Scholar] [CrossRef] [PubMed]
- Qorib, M.; Oladunni, T.; Denis, M.; Ososanya, E.; Cotae, P. COVID-19 Vaccine Hesitancy: A Global Public Health and Risk Modelling Framework Using an Environmental Deep Neural Network, Sentiment Classification with Text Mining and Emotional Reactions from COVID-19 Vaccination Tweets. Int. J. Environ. Res. Public. Health 2023, 20, 5803. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.H.; McNeela, E.; O’Donovan, O.; Rani, S.; Mehta, J.P. Artificial Intelligence and the Evolving Landscape of Immunopeptidomics. Proteomics Clin. Appl. 2025, 19, e70018. [Google Scholar] [CrossRef]
- Shahbazy, M.; Ramarathinam, S.H.; Li, C.; Illing, P.T.; Faridi, P.; Croft, N.P.; Purcell, A.W. MHCpLogics: An Interactive Machine Learning-Based Tool for Unsupervised Data Visualization and Cluster Analysis of Immunopeptidomes. Brief. Bioinform. 2024, 25, bbae087. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Campana, B.R.; Seferi, H.; Cinti, E.; Argentiero, A. Digital Twins in Pediatric Infectious Diseases: Virtual Models for Personalized Management. J. Pers. Med. 2025, 15, 514. [Google Scholar] [CrossRef]
- Wang, H.; Arulraj, T.; Ippolito, A.; Popel, A.S. From Virtual Patients to Digital Twins in Immuno-Oncology: Lessons Learned from Mechanistic Quantitative Systems Pharmacology Modeling. NPJ Digit. Med. 2024, 7, 189. [Google Scholar] [CrossRef]
- Li, L.; Back, S.-I.; Ma, J.; Guo, Y.; Galeandro-Diamant, T.; Clénet, D. Bayesian Optimization and Machine Learning for Vaccine Formulation Development. PloS One 2025, 20, e0324205. [Google Scholar] [CrossRef]
- Somogyi, E.; Csiszovszki, Z.; Molnár, L.; Lőrincz, O.; Tóth, J.; Pattijn, S.; Schockaert, J.; Mazy, A.; Miklós, I.; Pántya, K.; et al. A Peptide Vaccine Candidate Tailored to Individuals’ Genetics Mimics the Multi-Targeted T Cell Immunity of COVID-19 Convalescent Subjects. Front. Genet. 2021, 12, 684152. [Google Scholar] [CrossRef]
- James, C.A.; Ronning, P.; Cullinan, D.; Cotto, K.C.; Barnell, E.K.; Campbell, K.M.; Skidmore, Z.L.; Sanford, D.E.; Goedegebuure, S.P.; Gillanders, W.E.; et al. In Silico Epitope Prediction Analyses Highlight the Potential for Distracting Antigen Immunodominance with Allogeneic Cancer Vaccines. Cancer Res. Commun. 2021, 1, 115–126. [Google Scholar] [CrossRef]
- Ringeval, M.; Etindele Sosso, F.A.; Cousineau, M.; Paré, G. Advancing Health Care With Digital Twins: Meta-Review of Applications and Implementation Challenges. J. Med. Internet Res. 2025, 27, e69544. [Google Scholar] [CrossRef]
- Lasky, T.; McMahon, A.W.; Hua, W.; Forshee, R. Methodologic Approaches in Studies Using Real-World Data (RWD) to Measure Pediatric Safety and Effectiveness of Vaccines Administered to Pregnant Women: A Scoping Review. Vaccine 2021, 39, 3814–3824. [Google Scholar] [CrossRef]
- Batech, M.; Madsen, A.; Gatto, N.; Zhang, T.C.; Ricci, D.; Harvey, R.; Khan, N.; Jain, S. Combining Real-World and Clinical Trial Data Through Privacy-Preserving Record Linkage: Opportunities and Challenges-A Narrative Review. Health Sci. Rep. 2025, 8, e71272. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.A.P.M.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tak-Yin Tsang, O.; et al. Systems Biological Assessment of Immunity to Mild versus Severe COVID-19 Infection in Humans. Science 2020, 369, 1210–1220. [Google Scholar] [CrossRef]
- Ramasamy, M.N.; Kelly, E.J.; Seegobin, S.; Dargan, P.I.; Payne, R.; Libri, V.; Adam, M.; Aley, P.K.; Martinez-Alier, N.; Church, A.; et al. Immunogenicity and Safety of AZD2816, a Beta (B.1.351) Variant COVID-19 Vaccine, and AZD1222 (ChAdOx1 nCoV-19) as Third-Dose Boosters for Previously Vaccinated Adults: A Multicentre, Randomised, Partly Double-Blinded, Phase 2/3 Non-Inferiority Immunobridging Study in the UK and Poland. Lancet Microbe 2023, 4, e863–e874. [Google Scholar] [CrossRef]
- Bockstal, V.; Leyssen, M.; Heerwegh, D.; Spiessens, B.; Robinson, C.; Stoop, J.N.; Roozendaal, R.; Van Effelterre, T.; Gaddah, A.; Van Roey, G.A.; et al. Non-Human Primate to Human Immunobridging Demonstrates a Protective Effect of Ad26.ZEBOV, MVA-BN-Filo Vaccine against Ebola. NPJ Vaccines 2022, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Schlub, T.E.; Cromer, D.; Steain, M.; Fong, Y.; Gilbert, P.B.; Subbarao, K.; Triccas, J.A.; Kent, S.J.; Davenport, M.P. Correlates of Protection, Thresholds of Protection, and Immunobridging among Persons with SARS-CoV-2 Infection. Emerg. Infect. Dis. 2023, 29, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Joffe, M. Principal Stratification and Attribution Prohibition: Good Ideas Taken Too Far. Int. J. Biostat. 2011, 7, 35. [Google Scholar] [CrossRef]
- Sherman, E.; Shpitser, I. Identification and Estimation Of Causal Effects from Dependent Data. Adv. Neural Inf. Process. Syst. 2018, 2018, 9446–9457. [Google Scholar]
- Duarte, G.; Finkelstein, N.; Knox, D.; Mummolo, J.; Shpitser, I. An Automated Approach to Causal Inference in Discrete Settings. J. Am. Stat. Assoc. 2024, 119, 1778–1793. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.B.; Fong, Y.; Hejazi, N.S.; Kenny, A.; Huang, Y.; Carone, M.; Benkeser, D.; Follmann, D. Four Statistical Frameworks for Assessing an Immune Correlate of Protection (Surrogate Endpoint) from a Randomized, Controlled, Vaccine Efficacy Trial. Vaccine 2024, 42, 2181–2190. [Google Scholar] [CrossRef]
- Zhang, X.-M.; Gao, T.-H.; Cai, Q.-Y.; Xia, J.-B.; Sun, Y.-N.; Yang, J.; Li, W.-H.; Zhang, S.-X.-M.; Lou, H.-R.; Yu, X.-T.; et al. Artificial Intelligence in Digital Pathology Diagnosis and Analysis: Technologies, Challenges, and Future Prospects. Mil. Med. Res. 2026, 12, 93. [Google Scholar] [CrossRef]
- Mistretta, B.; Rankothgedera, S.; Castillo, M.; Rao, M.; Holloway, K.; Bhardwaj, A.; El Noafal, M.; Albarracin, C.; El-Zein, R.; Rezaei, H.; et al. Chimeric RNAs Reveal Putative Neoantigen Peptides for Developing Tumor Vaccines for Breast Cancer. Front. Immunol. 2023, 14, 1188831. [Google Scholar] [CrossRef]
- Shao, X.M.; Huang, J.; Niknafs, N.; Balan, A.; Cherry, C.; White, J.; Velculescu, V.E.; Anagnostou, V.; Karchin, R. HLA Class II Immunogenic Mutation Burden Predicts Response to Immune Checkpoint Blockade. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2022, 33, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.M.; Bhattacharya, R.; Huang, J.; Sivakumar, I.K.A.; Tokheim, C.; Zheng, L.; Hirsch, D.; Kaminow, B.; Omdahl, A.; Bonsack, M.; et al. High-Throughput Prediction of MHC Class I and II Neoantigens with MHCnuggets. Cancer Immunol. Res. 2020, 8, 396–408. [Google Scholar] [CrossRef]
- Jiménez-Luna, J.; Grisoni, F.; Weskamp, N.; Schneider, G. Artificial Intelligence in Drug Discovery: Recent Advances and Future Perspectives. Expert Opin. Drug Discov. 2021, 16, 949–959. [Google Scholar] [CrossRef]
- Zushin, P.-J.H.; Mukherjee, S.; Wu, J.C. FDA Modernization Act 2.0: Transitioning beyond Animal Models with Human Cells, Organoids, and AI/ML-Based Approaches. J. Clin. Invest. 2023, 133, e175824. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bapna, M.; Diab, A.R.; Ruiz, E.S.; Lotter, W. How AI Is Used in FDA-Authorized Medical Devices: A Taxonomy across 1,016 Authorizations. NPJ Digit. Med. 2025, 8, 388. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S.K. The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Des. Devel. Ther. 2023, 17, 2691–2725. [Google Scholar] [CrossRef]
- Garg, P.; Pareek, S.; Kulkarni, P.; Horne, D.; Salgia, R.; Singhal, S.S. Next-Generation Immunotherapy: Advancing Clinical Applications in Cancer Treatment. J. Clin. Med. 2024, 13, 6537. [Google Scholar] [CrossRef]
- Li, L.; Sun, M.; Wang, J.; Wan, S. Multi-Omics Based Artificial Intelligence for Cancer Research. Adv. Cancer Res. 2024, 163, 303–356. [Google Scholar] [CrossRef]
- He, X.; Liu, X.; Zuo, F.; Shi, H.; Jing, J. Artificial Intelligence-Based Multi-Omics Analysis Fuels Cancer Precision Medicine. Semin. Cancer Biol. 2023, 88, 187–200. [Google Scholar] [CrossRef]
- Zadravec, M.; Metsi-Guckel, E.; Kamenik, B.; Remelgas, J.; Khinast, J.; Roscioli, N.; Flamm, M.; Renawala, H.; Najarian, J.; Karande, A.; et al. Towards a Digital Twin of Primary Drying in Lyophilization Using Coupled 3-D Equipment CFD and 1-D Vial-Scale Simulations. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV 2025, 208, 114662. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Teke, J.; Fapohunda, O.; Weerasinghe, K.; Usman, S.O.; Ige, A.O.; Clement David-Olawade, A. Leveraging Artificial Intelligence in Vaccine Development: A Narrative Review. J. Microbiol. Methods 2024, 224, 106998. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Dhanushkodi, N.R.; Zayou, L.; Ibraim, I.C.; Quadiri, A.; Coulon, P.G.; Tifrea, D.F.; Suzer, B.; Shaik, A.M.; Chilukuri, A.; et al. Cross-Protection Induced by Highly Conserved Human B, CD4+, and CD8+ T-Cell Epitopes-Based Vaccine against Severe Infection, Disease, and Death Caused by Multiple SARS-CoV-2 Variants of Concern. Front. Immunol. 2024, 15, 1328905. [Google Scholar] [CrossRef]
- Vahed, H.; Prakash, S.; Quadiri, A.; Ibraim, I.C.; Omorogieva, E.; Patel, S.; Tadros, J.; Liao, E.J.; Lau, L.; Chentoufi, A.A.; et al. A Pan-Beta-Coronavirus Vaccine Bearing Conserved and Asymptomatic B- and T-Cell Epitopes Protects against Highly Pathogenic Delta and Highly Transmissible Omicron SARS-CoV-2 Variants. Hum. Vaccines Immunother. 2025, 21, 2527438. [Google Scholar] [CrossRef] [PubMed]
- El Arab, R.A.; Alkhunaizi, M.; Alhashem, Y.N.; Al Khatib, A.; Bubsheet, M.; Hassanein, S. Artificial Intelligence in Vaccine Research and Development: An Umbrella Review. Front. Immunol. 2025, 16, 1567116. [Google Scholar] [CrossRef]
- Kovalchik, K.A.; Hamelin, D.J.; Kubiniok, P.; Bourdin, B.; Mostefai, F.; Poujol, R.; Paré, B.; Simpson, S.M.; Sidney, J.; Bonneil, É.; et al. Machine Learning-Enhanced Immunopeptidomics Applied to T-Cell Epitope Discovery for COVID-19 Vaccines. Nat. Commun. 2024, 15, 10316. [Google Scholar] [CrossRef]
- Cho, M.K. Rising to the Challenge of Bias in Health Care AI. Nat. Med. 2021, 27, 2079–2081. [Google Scholar] [CrossRef]
- Kangueane, P.; Sakharkar, M.K. T-Epitope Designer: A HLA-Peptide Binding Prediction Server. Bioinformation 2005, 1, 21–24. [Google Scholar] [CrossRef]
- Gygi, J.P.; Kleinstein, S.H.; Guan, L. Predictive Overfitting in Immunological Applications: Pitfalls and Solutions. Hum. Vaccines Immunother. 2023, 19, 2251830. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology. Int. J. Mol. Sci. 2025, 26, 9409. [Google Scholar] [CrossRef]
- Witten, J.; Raji, I.; Manan, R.S.; Beyer, E.; Bartlett, S.; Tang, Y.; Ebadi, M.; Lei, J.; Nguyen, D.; Oladimeji, F.; et al. Artificial Intelligence-Guided Design of Lipid Nanoparticles for Pulmonary Gene Therapy. Nat. Biotechnol. 2025, 43, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
- Budhkar, A.; Song, Q.; Su, J.; Zhang, X. Demystifying the Black Box: A Survey on Explainable Artificial Intelligence (XAI) in Bioinformatics. Comput. Struct. Biotechnol. J. 2025, 27, 346–359. [Google Scholar] [CrossRef]
- Setegn, G.M.; Dejene, B.E. Explainable AI for Symptom-Based Detection of Monkeypox: A Machine Learning Approach. BMC Infect. Dis. 2025, 25, 419. [Google Scholar] [CrossRef]
- Elfatimi, E.; Lekbach, Y.; Prakash, S.; BenMohamed, L. Artificial Intelligence and Machine Learning in the Development of Vaccines and Immunotherapeutics-Yesterday, Today, and Tomorrow. Front. Artif. Intell. 2025, 8, 1620572. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zhang, L. AI Applications in HIV Research: Advances and Future Directions. Front. Microbiol. 2025, 16, 1541942. [Google Scholar] [CrossRef]
- Gasperini, G.; Baylor, N.; Black, S.; Bloom, D.E.; Cramer, J.; de Lannoy, G.; Denoel, P.; Feinberg, M.; Helleputte, T.; Kang, G.; et al. Vaccinology in the Artificial Intelligence Era. Sci. Transl. Med. 2025, 17, eadu3791. [Google Scholar] [CrossRef] [PubMed]




| Feature | Reverse Vaccinology (2010s) | AI/ML Integration (2020–2024) |
AI/ML Integration (2024–onwards) |
| Primary Goal | Identification of known antigens | Prediction of epitope binding | De novo design of immunogens |
| Data Source | Reference genomes | Large-scale multi-omics | Generative de novo synthesis |
| Vaccine Type | Prophylactic (Viral/Bacterial) | Viral & General Cancer | Precision Immuno-oncology & Digital Twins |
| Pharmacology | Antigen-only focus | Basic delivery scaffolds | Integrated Antigen- delivery kinetics |
| Epitope Task | Model Example |
Architecture Type |
Key Features / Input |
Peak Performance Metric |
Reference Type | Reference |
|---|---|---|---|---|---|---|
| HLA Class I Presentation | NetMHCpan | Supervised Feed-Forward NN | Peptide + HLA Pseudosequence | AUROC ~ 0.96 | Binding Affinity/Elution | [38,39] |
| HLA Class I Presentation | MixMHCpred | Unsupervised/Generative | Eluted Ligand Data Motifs | Performance Score (Motif Deconvolution) | Ligand Likelihood | [40] |
| HLA Class II Presentation | NetMHCIIpan | CNN-based Feed-Forward NN | Peptide Core Motif Search + HLA Sequence | AUROC ~ 0.85 | Binding Affinity/Elution | [41] |
| Linear B-cell Epitope | BepiPred-2.0 | Random Forest | Propensity Scales & Physicochemical Features | AUC ~ 0.75 | Sequence Accessibility | [42] |
| Conformational B-cell | EpiGraph | Graph Neural Network (GNN) | 3D Protein Graph Residue Contacts | AUC-PR ~ 0.24 | Structural Proximity/Features | [43] |
| TCR-Epitope Specificity | TITAN | Bimodal Attention Network | Paired TCR CDR3 + Peptide Sequence | AUROC ~ 0.87 (Unseen TCRs) | Paired T-cell Specificity | [44] |
| Immunogenicity | Immunogenicity Predictor (e.g., from PMID: 106) | Supervised ML/Statistical | Amino Acid Enrichment (Immunogenic vs. Presented) | AUROC ~ 0.70 | T-cell Activation | [45] |
| AI Approach | Application Stage | Core Function | Advantages | Limitations/Challenges | Representative Studies |
| EpiBERTope (Transformer-based) | Antigen & Epitope Prediction (Vaccines & Tumor Antigens) | Predicts linear and conformational B-cell epitopes from pathogen- or tumor-derived antigens. | Captures long-range sequence dependencies; adaptable to structurally complex antigens. | Requires large, high-quality labeled datasets; limited direct validation in tumor antigens. | [95] |
| Ensemble ML (Vaxign-ML) | Antigen & Epitope Prioritization | Integrates antigenicity, host–pathogen, or tumor-specific features to prioritize vaccine or neoantigen candidates. | Robust to noisy inputs; flexible integration of heterogeneous biological features. | Risk of overfitting in small neoantigen datasets; performance depends on feature engineering quality. | [96] |
| NetMHCpan (MHC Binding Predictor) | T-cell Epitope & Neoantigen Prediction | Predicts peptide binding affinity to MHC class I and II molecules for infectious or tumor-derived peptides. | Widely validated; foundational for both prophylactic vaccines and personalized cancer vaccines. | Reduced accuracy for rare HLA alleles; binding does not guarantee T-cell immunogenicity. | [97] |
| VaxiJen | Antigen Prediction | Identifies protective antigens or tumor-associated antigens without sequence alignment. | Rapid screening; alignment-free and computationally efficient. | Limited performance for multi-domain proteins and highly heterogeneous tumor antigens. | [98] |
| IntegralVac (Machine Learning) | Multi-epitope Vaccine & Neoantigen Construct Design | Designs multivalent constructs integrating antigenicity, immunogenicity, and allergenicity features. | Supports rational assembly of CD4+, CD8+, and B-cell epitopes; applicable to cancer vaccines. | Generalizability limited by epitope coverage and experimental validation availability. | [99] |
| Causal Inference Models | CoPs & Immune Response Modeling | Identifies correlates of protection or response from complex vaccine or immunotherapy trial datasets. | Addresses confounding and bias; supports uncertainty-aware inference in heterogeneous populations. | Requires rigorous trial design and expert statistical interpretation; sensitive to missing data. | [100] |
| Predictive Analytics / Regression | Clinical Trial Optimization (Vaccines & IO) | Optimizes patient recruitment, site selection, and enrollment forecasting for vaccine and immunotherapy trials. | Reduces trial timelines and cost; enables stratification by biomarker or immune phenotype. | Dependent on access to harmonized EHR and biomarker data; regulatory and privacy constraints. | [101] |
| Deep Learning | Manufacturing, Logistics & Supply Chain | Predicts demand and optimizes production scheduling for vaccines and cell- or RNA-based immunotherapies. | Integrates epidemiological, clinical, and operational signals for improved forecasting. | Vulnerable to unmodeled shocks; limited by historical representativeness. | [102] |
| IoT & Real-time Monitoring | Cold Chain & Advanced Therapy Logistics | Monitors storage and transport conditions for vaccines and temperature-sensitive immunotherapies. | Preserves product integrity; supports compliance for complex biologics and personalized therapies. | High infrastructure cost; cybersecurity and interoperability challenges. | [103] |
| Optimization Strategy | Key AI/ML Architecture | Translatable Clinical/Industrial Benefit | Technical Impact / Metric |
| In-Silico Trials (Digital Twins) | Mechanistic Modeling + Bayesian NNs | Dose Optimization: Predicts individual safety/efficacy profiles before Phase I. | Reduces dose-finding duration by ~50%. |
| Synthetic Control Arms (SCA) | Generative Adversarial Networks (GANs) | Ethical Compliance: Replaces placebo arms in rare disease or oncology trials. | Reduces required human subjects by 20–30%. |
| Patient Stratification | Transformer-based Multi-modal Fusion | Responder Selection: Identifies high-likelihood responders via multi-omic biomarkers. | Improves Phase II/III success rates by 15%. |
| Site Selection & Recruitment | Geospatial AI + NLP (EHR Mining) | Enrollment Speed: Finds optimal global sites based on pathogen prevalence or tumor type. | Accelerates recruitment timelines by 3–6 months. |
| Adaptive Bayesian Design | Reinforcement Learning (RL) | Dynamic Optimization: Real-time trial adjustments (dosage/sample size). | Minimizes capital loss via early-exit of failing arms. |
| Regulatory Compliance | Explainable AI (XAI) / SHAP Values | FDA/EMA Trust: Provides white-box reasoning for AI-driven clinical decisions. | Standardizes AI-supported regulatory submissions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
