Submitted:
29 January 2026
Posted:
30 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Overview of Adult Wound Healing vs. Fetal Regenerative Healing
2.1. Fetal vs. Adult Wound Healing: A Comparative Overview
2.2. Inflammatory Response
2.3. Extracellular Matrix Composition
2.4. Biochemical Signaling Through the ECM
2.5. Gene Expression and Transcriptional Programs
3. Fibroblast Subpopulations and Lineage-Dependent Regulation of Wound Healing
3.1. Embryonic Origin and Identification Markers of Dermal Fibroblasts Sub-Populations
3.2. Fibroblast Subpopulations Contribute Differently to Wound Healing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ECM | extracellular matrix |
| EPFs | Engrailed-1–positive fibroblasts |
| TGF-β | transforming growth factor-β |
| HA | hyaluronic acid |
| FN | fibronectin |
| PDGF | platelet-derived growth factor |
| TNFα | tumor necrosis factor α |
| IL | interleukin |
| VEGF | vascular endothelial growth factor |
| PRP | platelet-rich plasma |
| MHC | major histocompatibility complex |
| GAGs | glycosaminoglycans |
| CS | chondroitin sulfate |
| MMPs | matrix metalloproteinases |
| LH | lysyl hydroxylase |
| PH | prolyl hydroxylase |
| LOX | low lysyl oxidase |
| TGM2 | transglutaminase 2 |
| FGFs | fibroblast growth factors |
| FAK | focal adhesion kinase |
| PI3K | Phosphatidylinositol 3-Kinase |
| MAPK | Mitogen-Activated Protein Kinase |
| YAP | Yes-associated protein |
| TAZ | Transcriptional coactivator with PDZ-binding motif |
| CTGF | connective tissue growth factor |
| SOX | SRY-related high-mobility-group (HMG) box |
| Trps1 | Trichorhinophalangeal Syndrome Type I |
| PDGFRA | PDGF receptor A |
| DLK-1 | delta-like homology -1 |
| LRIG1 | leucine-rich repeat protein |
| Twist-2/Dermo-1 | twist-related protein-2 |
| Prrx1 | Pair-related homeobox 1 |
| PPFs | Pair-related homeobox 1 (Prrx1) positive |
| PNFs | Pair-related homeobox 1 (Prrx1) negative fibroblasts |
References
- Lim, K.-M. Skin Epidermis and Barrier Function. Int. J. Mol. Sci. 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Michopoulou, A.; Montmasson, M.; Garnier, C.; Lambert, E.; Dayan, G.; Rousselle, P. How Do Epidermal Matrix Metalloproteinases Support Re-Epithelialization during Skin Healing? Matrix Biol. 2020, 94, 1–17. [Google Scholar] [CrossRef]
- Hu, M.S.; Borrelli, M.R.; Hong, W.X.; Malhotra, S.; Cheung, A.T.M.; Ransom, R.C.; Rennert, R.C.; Morrison, S.D.; Lorenz, H.P.; Longaker, M.T. Embryonic Skin Development and Repair. Organogenesis 2018, 14, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, M.M.W. Fetal Wound Healing BT - Textbook on Scar Management: State of the Art Management and Emerging Technologies; Téot, L., Mustoe, T.A., Middelkoop, E., Gauglitz, G.G., Eds.; Springer International Publishing: Cham, 2020; pp. 3–9. ISBN 978-3-030-44766-3. [Google Scholar]
- Coolen, N.A.; Schouten, K.C.W.M.; Middelkoop, E.; Ulrich, M.M.W. Comparison between Human Fetal and Adult Skin. Arch. Dermatol. Res. 2010, 302, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Park, S. Building vs. Rebuilding Epidermis: Comparison Embryonic Development and Adult Wound Repair. Front. Cell Dev. Biol. 2022, 9. [Google Scholar] [CrossRef]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014. [Google Scholar] [CrossRef]
- Rousselle, P.; Montmasson, M.; Garnier, C. Extracellular Matrix Contribution to Skin Wound Re-Epithelialization. Matrix Biol. 2019, 75–76, 12–26. [Google Scholar] [CrossRef]
- Degen, K.E.; Gourdie, R.G. Embryonic Wound Healing: A Primer for Engineering Novel Therapies for Tissue Repair. Birth Defects Res. C. Embryo Today 2012, 96, 258–270. [Google Scholar] [CrossRef]
- Desmoulière, A.; Geinoz, A.; Gabbiani, F.; Gabbiani, G. Transforming Growth Factor-Beta 1 Induces Alpha-Smooth Muscle Actin Expression in Granulation Tissue Myofibroblasts and in Quiescent and Growing Cultured Fibroblasts. J. Cell Biol. 1993, 122, 103–111. [Google Scholar] [CrossRef]
- Rolfe, K.J.; Richardson, J.; Vigor, C.; Irvine, L.M.; Grobbelaar, A.O.; Linge, C. A Role for TGF-Beta1-Induced Cellular Responses during Wound Healing of the Non-Scarring Early Human Fetus? J. Invest. Dermatol 2007, 127, 2656–2667. [Google Scholar] [CrossRef]
- Lorenz, H.P.; Lin, R.Y.; Longaker, M.T.; Whitby, D.J.; Adzick, N.S. The Fetal Fibroblast: The Effector Cell of Scarless Fetal Skin Repair. Plast. Reconstr. Surg. 1995, 96, 1251. [Google Scholar] [CrossRef]
- Martin, P.; Lewis, J. Actin Cables and Epidermal Movement in Embryonic Wound Healing. Nature 1992, 360, 179–183. [Google Scholar] [CrossRef]
- McCluskey, J.; Martin, P. Analysis of the Tissue Movements of Embryonic Wound Healing—DiI Studies in the Limb Bud Stage Mouse Embryo. Dev. Biol. 1995, 170, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.L.; Marshall, C.D.; Barnes, L.A.; Murphy, M.P.; Ransom, R.C.; Longaker, M.T. Scarless Wound Healing: Transitioning from Fetal Research to Regenerative Healing. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Larson, B.J.; Longaker, M.T.; Lorenz, H.P. Scarless Fetal Wound Healing: A Basic Science Review. Plast. Reconstr. Surg. 2010, 126, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.L.N.P.; Krijnen, P.A.J.; Middelkoop, E.; Niessen, H.W.M.; Boekema, B.K.H.L. Fetal Skin Wound Healing: Key Extracellular Matrix Components and Regulators in Scarless Healing. J. Invest. Dermatol. 2025, 145, 280–302. [Google Scholar] [CrossRef]
- Driskell, R.R.; Lichtenberger, B.M.; Hoste, E.; Kretzschmar, K.; Simons, B.D.; Charalambous, M.; Ferron, S.R.; Herault, Y.; Pavlovic, G.; Ferguson-Smith, A.C.; et al. Distinct Fibroblast Lineages Determine Dermal Architecture in Skin Development and Repair. Nature 2013. [Google Scholar] [CrossRef]
- Rinkevich, Y.; Walmsley, G.G.; Hu, M.S.; Maan, Z.N.; Newman, A.M.; Drukker, M.; Januszyk, M.; Krampitz, G.W.; Gurtner, G.C.; Lorenz, H.P.; et al. Identification and Isolation of a Dermal Lineage with Intrinsic Fibrogenic Potential. Science (80-. ) 2015. [Google Scholar] [CrossRef]
- Jiang, D.; Correa-Gallegos, D.; Christ, S.; Stefanska, A.; Liu, J.; Ramesh, P.; Rajendran, V.; De Santis, M.M.; Wagner, D.E.; Rinkevich, Y. Two Succeeding Fibroblastic Lineages Drive Dermal Development and the Transition from Regeneration to Scarring. Nat. Cell Biol. 2018. [Google Scholar] [CrossRef]
- Jiang, D.; Rinkevich, Y. Distinct Fibroblasts in Scars and Regeneration. Curr. Opin. Genet. Dev. 2021, 70, 7–14. [Google Scholar] [CrossRef]
- Ye, H.; Yu, Q.; Lee, A.J.K.S.; Dong, W.; Chang, Z.; Correa-Gallegos, D.; Jiang, D.; Dai, R.; Schorpp, K.; Hadian, K.; et al. Distinct Fibroblast Assemblies Establish Scarless Regeneration. Cell Rep. 2025, 45, 116767. [Google Scholar] [CrossRef] [PubMed]
- Lorant, J.; Poinas, A.; Nerriere, O.; Vrignaud, F.; Frenard, C.; Winer, N.; Khammari, A.; Dréno, B. Foetal Skin Cells in Wound Healing: A Promising Tool for Clinical Application. Eur. J. Dermatology 2019, Vol. 29, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Redd, M.J.; Cooper, L.; Wood, W.; Stramer, B.; Martin, P. Wound Healing and Inflammation: Embryos Reveal the Way to Perfect Repair. Philos. Trans. R. Soc. London. Ser. B, Biol. Sci. 2004, 359, 777–784. [Google Scholar] [CrossRef]
- Lo, D.D.; Hu, M.S.; Zimmermann, A.S.; Longaker, M.T.; Peter Lorenz, H. Chapter 51 - Differences in Foetal, Adult Skin and Mucosal Repair; Vishwakarma, A., Sharpe, P., Shi, S., Ramalingam, M.B.T.-S.C.B., Eds.; Academic Press: Boston, 2015; pp. 691–702. ISBN 978-0-12-397157-9. [Google Scholar]
- Beanes, S.R.; Hu, F.-Y.; Soo, C.; Dang, C.M.H.; Urata, M.; Ting, K.; Atkinson, J.B.; Benhaim, P.; Hedrick, M.H.; Lorenz, H.P. Confocal Microscopic Analysis of Scarless Repair in the Fetal Rat: Defining the Transition. Plast. Reconstr. Surg. 2002, 109, 160–170. [Google Scholar] [CrossRef]
- Whitby, D.J.; Ferguson, M.W. The Extracellular Matrix of Lip Wounds in Fetal, Neonatal and Adult Mice. Development 1991, 112, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound Repair and Regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Ulrich MMW Fetal Wound Healing; Téot, L.; Mustoe, T.A.; Middelkoop, E.; et al. (Eds.) Textb. Scar Manag. State Art Manag. Emerg. Technol. [Internet]; Springer: Cham, 2020; Chapter 1. [Google Scholar]
- Wang, Z.; Qi, F.; Luo, H.; Xu, G.; Wang, D. Inflammatory Microenvironment of Skin Wounds. In Front. Immunol.; 2022; Volume 13. [Google Scholar]
- Frech, S.; Lichtenberger, B.M. Modulating Embryonic Signaling Pathways Paves the Way for Regeneration in Wound Healing. In Front. Physiol.; 2024; Volume 15. [Google Scholar]
- Clark, R.A.F. Wound Repair Overview and General Considerations. In The Molecular, Cellular Biology of Wound Repair; Clark, R.A.F., Ed.; Plenum Press: New York; - References - Scientific Research Publishing, 1996; pp. 3–35. [Google Scholar]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. Eur. Chir. Forschung. Rech. Chir. Eur. 2017, 58, 81–94. [Google Scholar] [CrossRef]
- Mastrogiannaki, M.; Lichtenberger, B.M.; Reimer, A.; Collins, C.A.; Driskell, R.R.; Watt, F.M. β-Catenin Stabilization in Skin Fibroblasts Causes Fibrotic Lesions by Preventing Adipocyte Differentiation of the Reticular Dermis. J. Invest. Dermatol. 2016. [Google Scholar] [CrossRef]
- Bochaton-Piallat, M.-L.; Gabbiani, G.; Hinz, B. The Myofibroblast in Wound Healing and Fibrosis: Answered and Unanswered Questions. F1000Research 2016, 5. [Google Scholar] [CrossRef]
- Michopoulou, A.; Montmasson, M.; Garnier, C.; Lambert, E.; Dayan, G.; Rousselle, P. A Novel Mechanism in Wound Healing: Laminin 332 Drives MMP9/14 Activity by Recruiting Syndecan-1 and CD44. Matrix Biol. 2020, 94, 1–17. [Google Scholar] [CrossRef]
- Longaker, M.T.; Whitby, D.J.; Ferguson, M.W.; Lorenz, H.P.; Harrison, M.R.; Adzick, N.S. Adult Skin Wounds in the Fetal Environment Heal with Scar Formation. Ann. Surg. 1994, 219, 65–72. [Google Scholar] [CrossRef]
- Monavarian, M.; Kader, S.; Moeinzadeh, S.; Jabbari, E. Regenerative Scar-Free Skin Wound Healing. Tissue Eng. Part B Rev. 2019, 25, 294–311. [Google Scholar] [CrossRef]
- Yates, C.C.; Hebda, P.; Wells, A. Skin Wound Healing and Scarring: Fetal Wounds and Regenerative Restitution. Birth Defects Res. C. Embryo Today 2012, 96, 325–333. [Google Scholar] [CrossRef]
- Scheid, A.; Wenger, R.H.; Schäffer, L.; Camenisch, I.; Distler, O.; Ferenc, A.; Cristina, H.; Ryan, H.E.; Johnson, R.S.; Wagner, K.F.; et al. Physiologically Low Oxygen Concentrations in Fetal Skin Regulate Hypoxia-Inducible Factor 1 and Transforming Growth Factor-Beta3. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2002, 16, 411–413. [Google Scholar] [CrossRef]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth Factors and Cytokines in Wound Healing. Wound Repair Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef]
- Lo, D.D.; Zimmermann, A.S.; Nauta, A.; Longaker, M.T.; Lorenz, H.P. Scarless Fetal Skin Wound Healing Update. Birth Defects Res. Part C Embryo Today Rev. 2012, 96, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Chi, J.T.; Dudoit, S.; Bondre, C.; Van De Rijn, M.; Botstein, D.; Brown, P.O. Diversity, Topographic Differentiation, and Positional Memory in Human Fibroblasts. In Proc. Natl. Acad. Sci. U. S. A.; 2002; Volume 99, pp. 12877–12882. [Google Scholar] [CrossRef]
- Singh, D.; Rai, V.; Agrawal, D.K. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol. Cardiovasc. Med. 2023, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Leeming, D.J.; Karsdal, M.A. Type V Collagen. In Biochem. Collagens, Laminins Elastin Struct. Funct. Biomarkers, Third Ed. ed; 2024; pp. 55–60. [Google Scholar] [CrossRef]
- Smith, L.T.; Holbrook, K.A.; Madri, J.A. Collagen Types I, III, and V in Human Embryonic and Fetal Skin. Am. J. Anat. 1986, 175, 507–521. [Google Scholar] [CrossRef]
- Buchanan, E.P.; Longaker, M.T.; Lorenz, H.P. Chapter 6 Fetal Skin Wound Healing. Adv. Clin. Chem. 2009, 48, 137–161. [Google Scholar] [CrossRef]
- Coolen, N.A.; Schouten, K.C.W.M.; Boekema, B.K.H.L.; Middelkoop, E.; Ulrich, M.M.W. Wound Healing in a Fetal, Adult, and Scar Tissue Model: A Comparative Study. In Wound Repair Regen.; 2010; Volume 18, pp. 291–301. [Google Scholar] [CrossRef]
- Mast, B.A.; Flood, L.C.; Haynes, J.H.; Depalma, R.L.; Cohen, I.K.; Diegelmann, R.F.; Krummel, T.M. Hyaluronic Acid Is a Major Component of the Matrix of Fetal Rabbit Skin and Wounds: Implications for Healing by Regeneration. Matrix 1991, 11, 63–68. [Google Scholar] [CrossRef]
- Kennedy, C.I.; Diegelmann, R.F.; Haynes, J.H.; Yager, D.R. Proinflammatory Cytokines Differentially Regulate Hyaluronan Synthase Isoforms in Fetal and Adult Fibroblasts. J. Pediatr. Surg. 2000, 35, 874–879. [Google Scholar] [CrossRef]
- Colwell, A.S.; Longaker, M.T.; Lorenz, H.P. Fetal Wound Healing. Front. Biosci. 2003, 8. [Google Scholar] [CrossRef]
- Soo, C.; Hu, F.Y.; Zhang, X.; Wang, Y.; Beanes, S.R.; Lorenz, H.P.; Hedrick, M.H.; Mackool, R.J.; Plaas, A.; Kim, S.J.; et al. Differential Expression of Fibromodulin, a Transforming Growth Factor-β Modulator, in Fetal Skin Development and Scarless Repair. Am. J. Pathol. 2000, 157, 423–433. [Google Scholar] [CrossRef]
- Danielson, K.G.; Baribault, H.; Holmes, D.F.; Graham, H.; Kadler, K.E.; Iozzo, R. V. Targeted Disruption of Decorin Leads to Abnormal Collagen Fibril Morphology and Skin Fragility. J. Cell Biol. 1997, 136, 729–743. [Google Scholar] [CrossRef]
- Pang, X.; Dong, N.; Zheng, Z. Small Leucine-Rich Proteoglycans in Skin Wound Healing. Front. Pharmacol. 2020, 10, 501915. [Google Scholar] [CrossRef]
- Bullard, K.M.; Longaker, M.T.; Lorenz, H.P. Fetal Wound Healing: Current Biology. World J. Surg. 2003, 27, 54–61. [Google Scholar] [CrossRef]
- Ramelet, A.A.; Hirt-Burri, N.; Raffoul, W.; Scaletta, C.; Pioletti, D.P.; Offord, E.; Mansourian, R.; Applegate, L.A. Chronic Wound Healing by Fetal Cell Therapy May Be Explained by Differential Gene Profiling Observed in Fetal versus Old Skin Cells. Exp. Gerontol. 2009, 44, 208–218. [Google Scholar] [CrossRef]
- Soo, C.; Beanes, S.R.; Hu, F.Y.; Zhang, X.; Dang, C.; Chang, G.; Wang, Y.; Nishimura, I.; Freymiller, E.; Longaker, M.T.; et al. Ontogenetic Transition in Fetal Wound Transforming Growth Factor-β Regulation Correlates with Collagen Organization. Am. J. Pathol. 2003, 163, 2459–2476. [Google Scholar] [CrossRef] [PubMed]
- Colwell, A.S.; Longaker, M.T.; Lorenz, H.P. Identification of Differentially Regulated Genes in Fetal Wounds during Regenerative Repair. Wound Repair Regen. 2008, 16, 450–459. [Google Scholar] [CrossRef]
- Whitby, D.J.; Ferguson, M.W.J. The Extracellular Matrix of Lip Wounds in Fetal, Neonatal and Adult Mice. Development 1991, 112, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Hirt-Burri, N.; Scaletta, C.; Gerber, S.; Pioletti, D.P.; Applegate, L.A. Wound-Healing Gene Family Expression Differences between Fetal and Foreskin Cells Used for Bioengineered Skin Substitutes. Artif. Organs 2008, 32, 509–518. [Google Scholar] [CrossRef]
- Moulin, V.; Plamondon, M. Differential Expression of Collagen Integrin Receptor on Fetal vs. Adult Skin Fibroblasts: Implication in Wound Contraction during Healing. Br. J. Dermatol. 2002, 147, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Meuli, M.; Lorenz, H.P.; Hedrick, M.H.; Sullivan, K.M.; Harrison, M.R.; Adzick, N.S. Scar Formation in the Fetal Alimentary Tract. J. Pediatr. Surg. 1995, 30, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Longaker, M.T.; Whitby, D.J.; Jennings, R.W.; Duncan, B.W.; Ferguson, M.W.J.; Harrison, M.R.; Adzick, N.S. Fetal Diaphragmatic Wounds Heal with Scar Formation. J. Surg. Res. 1991, 50, 375–385. [Google Scholar] [CrossRef]
- Longaker, M.T.; Whitby, D.J.; Ferguson, M.W.J.; Lorenz, H.P.; Harrison, M.R.; Adzick, N.S. Adult Skin Wounds in the Fetal Environment Heal with Scar Formation. Ann. Surg. 1994, 219, 65–72. [Google Scholar] [CrossRef]
- Armstrong, J.R.; Ferguson, M.W.J. Ontogeny of the Skin and the Transition from Scar-Free to Scarring Phenotype during Wound Healing in the Pouch Young of a Marsupial, Monodelphis Domestica. Dev. Biol. 1995, 169, 242–260. [Google Scholar] [CrossRef]
- Yang, L.; Qui, C.X.; Ludlow, A.; Ferguson, M.W.J.; Brunner, G. Active Transforming Growth Factor-β in Wound Repair: Determination Using a New Assay. Am. J. Pathol. 1999, 154, 105. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, M.W.J.; O’Kane, S. Scar-Free Healing: From Embryonic Mechanisms to Adult Therapeutic Intervention. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2004, 359, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Bullard, K.M.; Cass, D.L.; Banda, M.J.; Adzick, N.S. Transforming Growth Factor Beta-1 Decreases Interstitial Collagenase in Healing Human Fetal Skin. J. Pediatr. Surg. 1997, 32, 1023–1027. [Google Scholar] [CrossRef]
- Xue, M.; Jackson, C.J. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv. Wound Care 2015, 4, 119–136. [Google Scholar] [CrossRef]
- Whitby, D.J.; Ferguson, M.W.J. Immunohistochemical Localization of Growth Factors in Fetal Wound Healing. Dev. Biol. 1991, 147, 207–215. [Google Scholar] [CrossRef]
- Marini, M.; Bertolai, R.; Ambrosini, S.; Sarchielli, E.; Vannelli, G.B.; Sgambati, E. Differential Expression of Vascular Endothelial Growth Factor in Human Fetal Skeletal Site-Specific Tissues: Mandible versus Femur. Acta Histochem. 2015, 117, 228–234. [Google Scholar] [CrossRef]
- Ono, I.; Gunji, H.; Zhang, J.Z.; Maruyama, K.; Kaneko, F. A Study of Cytokines in Burn Blister Fluid Related to Wound Healing. Burns 1995, 21, 352–355. [Google Scholar] [CrossRef]
- Gordon, A.; Kozin, E.D.; Keswani, S.G.; Vaikunth, S.S.; Katz, A.B.; Zoltick, P.W.; Favata, M.; Radu, A.P.; Soslowsky, L.J.; Herlyn, M.; et al. Permissive Environment in Postnatal Wounds Induced by Adenoviral-Mediated Overexpression of the Anti-Inflammatory Cytokine Interleukin-10 Prevents Scar Formation. Wound Repair Regen. 2008, 16, 70–79. [Google Scholar] [CrossRef]
- Liang, H.X.; Yi, C.; He, S.H.; Zhou, L.Y.; Li, F.F.; Tang, J.; Chen, E.X.; Fu, L.J.; Wang, Y.X.; Xie, Y.L.; et al. The Role of FAK Signaling in Early Placental Development and Trophoblast Lineage Specification in Human Pregnancy. Cell. Signal. 2025, 134, 111946. [Google Scholar] [CrossRef] [PubMed]
- Barnes, L.A.; Marshall, C.D.; Leavitt, T.; Hu, M.S.; Moore, A.L.; Gonzalez, J.G.; Longaker, M.T.; Gurtner, G.C. Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation. Adv. wound care 2018, 7, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Panciera, T.; Azzolin, L.; Cordenonsi, M.; Piccolo, S. Mechanobiology of YAP and TAZ in Physiology and Disease. Nat. Rev. Mol. Cell Biol. 2017 1812 2017, 18, 758–770. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Qian, X.; Li, L.; Zhang, H.; Liu, Z. RhoA/ROCK-YAP/TAZ Axis Regulates the Fibrotic Activity in Dexamethasone-Treated Human Trabecular Meshwork Cells. Front. Mol. Biosci. 2021, 8, 728932. [Google Scholar] [CrossRef]
- Walko, G.; Woodhouse, S.; Pisco, A.O.; Rognoni, E.; Liakath-Ali, K.; Lichtenberger, B.M.; Mishra, A.; Telerman, S.B.; Viswanathan, P.; Logtenberg, M.; et al. A Genome-Wide Screen Identifies YAP/WBP2 Interplay Conferring Growth Advantage on Human Epidermal Stem Cells. Nat. Commun. 2017 81 2017, 8, 14744. [Google Scholar] [CrossRef] [PubMed]
- Rognoni, E.; Walko, G. The Roles of YAP/TAZ and the Hippo Pathway in Healthy and Diseased Skin. Cells 2019, 8, 411. [Google Scholar] [CrossRef]
- Heng, B.C.; Zhang, X.; Aubel, D.; Bai, Y.; Li, X.; Wei, Y.; Fussenegger, M.; Deng, X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front. Cell Dev. Biol. 2020, 8, 559813. [Google Scholar] [CrossRef]
- Lim, J.H.; Kang, H.M.; Jung, C.-R. The Role of RhoA/ROCK Singaling Pathway in Organoid Research. Organoid 2025, 5, e4. [Google Scholar] [CrossRef]
- Whyte, J.L.; Smith, A.A.; Liu, B.; Manzano, W.R.; Evans, N.D.; Dhamdhere, G.R.; Fang, M.Y.; Chang, H.Y.; Oro, A.E.; Helms, J.A. Augmenting Endogenous Wnt Signaling Improves Skin Wound Healing. PLoS One 2013, 8. [Google Scholar] [CrossRef]
- Tan, K.K.B.; Salgado, G.; Connolly, J.E.; Chan, J.K.Y.; Lane, E.B. Characterization of Fetal Keratinocytes, Showing Enhanced Stem Cell-like Properties: A Potential Source of Cells for Skin Reconstruction. Stem cell reports 2014, 3, 324–338. [Google Scholar] [CrossRef]
- Gschwandtner, M.; Zhong, S.; Tschachler, A.; Mlitz, V.; Karner, S.; Elbe-Bürger, A.; Mildner, M. Fetal Human Keratinocytes Produce Large Amounts of Antimicrobial Peptides: Involvement of Histone-Methylation Processes. J. Invest. Dermatol. 2014, 134, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.; Martin, P. Epigenetic Reprogramming during Wound Healing: Loss of Polycomb-Mediated Silencing May Enable Upregulation of Repair Genes. EMBO Rep. 2009, 10, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Yuen, R.K.; Jiang, R.; Peñaherrera, M.S.; McFadden, D.E.; Robinson, W.P. Genome-Wide Mapping of Imprinted Differentially Methylated Regions by DNA Methylation Profiling of Human Placentas from Triploidies. Epigenetics Chromatin 2011, 4, 10. [Google Scholar] [CrossRef]
- Carre, A.L.; James, A.W.; MacLeod, L.; Kong, W.; Kawai, K.; Longaker, M.T.; Lorenz, H.P. Interaction of Wingless Protein (Wnt), Transforming Growth Factor-Beta1, and Hyaluronan Production in Fetal and Postnatal Fibroblasts. Plast. Reconstr. Surg. 2010, 125, 74–88. [Google Scholar] [CrossRef]
- Hu, M.S.; Januszyk, M.; Hong, W.X.; Walmsley, G.G.; Zielins, E.R.; Atashroo, D.A.; Maan, Z.N.; McArdle, A.; Takanishi, D.M.; Gurtner, G.C.; et al. Gene Expression in Fetal Murine Keratinocytes and Fibroblasts. J. Surg. Res. 2014, 190, 344–357. [Google Scholar] [CrossRef]
- Yang, W.; Liu, L.; Cheng, X. Research Progress on Scar-Free Healing. Ann. Med. 2025, 57, 2575109. [Google Scholar] [CrossRef]
- Wissmüller, S.; Kosian, T.; Wolf, M.; Finzsch, M.; Wegner, M. The High-Mobility-Group Domain of Sox Proteins Interacts with DNA-Binding Domains of Many Transcription Factors. Nucleic Acids Res. 2006, 34, 1735–1744. [Google Scholar] [CrossRef]
- Miao, Q.; Hill, M.C.; Chen, F.; Mo, Q.; Ku, A.T.; Ramos, C.; Sock, E.; Lefebvre, V.; Nguyen, H. SOX11 and SOX4 Drive the Reactivation of an Embryonic Gene Program during Murine Wound Repair. Nat. Commun. 2019, 10, 4042. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.W.; LeGrand, C.F.; Kinnear, B.F.; Denil, S.L.I.J.; Dye, D.E.; Benny, P.; Chan, J.K.Y.; Lane, E.B.; Coombe, D.R. Keratinocyte Self-Renewal and Differentiation Is Dictated by Extrinsic Signals from Dermal Extracellular Matrices. Open Biol. 2025, 15, 240417. [Google Scholar] [CrossRef]
- Hu, M.S.; Hong, W.X.; Januszyk, M.; Walmsley, G.G.; Luan, A.; Maan, Z.N.; Moshrefi, S.; Tevlin, R.; Wan, D.C.; Gurtner, G.C.; et al. Pathway Analysis of Gene Expression in Murine Fetal and Adult Wounds. Adv. wound care 2018, 7, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.; Marçal, H.; Foster, L.J.R. Towards Scarless Wound Healing: A Comparison of Protein Expression between Human, Adult and Foetal Fibroblasts. Biomed Res. Int. 2014, 2014, 676493. [Google Scholar] [CrossRef]
- Hao, A.; Dong, X.; Gou, Y.; Li, A.; Li, J.; Xiang, H.; Rahaman, S.; Zhu, Y.; Zhang, H.; You, W.; et al. Engrailed-1 Inactivation Leads to Scarless Skin Wound Healing through Extracellular Matrix Remodeling. Genes Dis. 2025, 12, 101484. [Google Scholar] [CrossRef]
- Korosec, A.; Frech, S.; Gesslbauer, B.; Vierhapper, M.; Radtke, C.; Petzelbauer, P.; Lichtenberger, B.M. Lineage Identity and Location within the Dermis Determine the Function of Papillary and Reticular Fibroblasts in Human Skin. J. Invest. Dermatol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.B.; Valencia, C.; Akras, D.; DiIorio, S.E.; Griffin, M.F.; Longaker, M.T.; Wan, D.C. Understanding Fibroblast Heterogeneity in Form and Function. Biomedicines 2023, 11. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, M.; Ohn, J.; Seong, R.H.; Chung, J.H.; Kim, K.H.; Jo, S.J.; Kwon, O. Twist2-Driven Chromatin Remodeling Governs the Postnatal Maturation of Dermal Fibroblasts. Cell Rep. 2022, 39, 110821. [Google Scholar] [CrossRef]
- Gary, R.; Peter, V.; James, F.; P.E.F., M.; Emily, S.; Issac, G.; B.R., A.; Ni, H.; Bayanne, O.; Anna, D.; et al. Developmental Cell Programs Are Co-Opted in Inflammatory Skin Disease. Science (80-. ). 2021, 371, eaba6500. [Google Scholar] [CrossRef]
- Plikus, M. V; Wang, X.; Sinha, S.; Forte, E.; Thompson, S.M.; Herzog, E.L.; Driskell, R.R.; Rosenthal, N.; Biernaskie, J.; Horsley, V. Fibroblasts: Origins, Definitions, and Functions in Health and Disease. Cell 2021, 184, 3852–3872. [Google Scholar] [CrossRef]
- Thulabandu, V.; Chen, D.; Atit, R.P. Dermal Fibroblast in Cutaneous Development and Healing. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7. [Google Scholar] [CrossRef]
- Myung, P.; Andl, T.; Atit, R. The Origins of Skin Diversity: Lessons from Dermal Fibroblasts. Development 2022, 149, dev200298. [Google Scholar] [CrossRef]
- Rognoni, E.; Pisco, A.O.; Hiratsuka, T.; Sipilä, K.H.; Belmonte, J.M.; Mobasseri, S.A.; Philippeos, C.; Dilão, R.; Watt, F.M. Fibroblast State Switching Orchestrates Dermal Maturation and Wound Healing. Mol. Syst. Biol. 2018, 14, e8174. [Google Scholar] [CrossRef]
- Morioka, N.; Ganier, C.; Watt, F.M. Fetal Fibroblast Heterogeneity Defines Dermal Architecture during Human Embryonic Skin Development. J. Invest. Dermatol. 2025, 145, 1081–1091.e7. [Google Scholar] [CrossRef]
- Driskell, R.R.; Watt, F.M. Understanding Fibroblast Heterogeneity in the Skin. Trends Cell Biol. 2015, 25, 92–99. [Google Scholar] [CrossRef]
- Driskell, R.R.; Lichtenberger, B.M.; Hoste, E.; Kretzschmar, K.; Simons, B.D.; Charalambous, M.; Ferron, S.R.; Herault, Y.; Pavlovic, G.; Ferguson-Smith, A.C.; et al. Distinct Fibroblast Lineages Determine Dermal Architecture in Skin Development and Repair. Nature 2013, 504, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Driskell, R.R.; Lichtenberger, B.M.; Hoste, E.; Kretzschmar, K.; Simons, B.D.; Charalambous, M.; Ferron, S.R.; Herault, Y.; Pavlovic, G.; Ferguson-Smith, A.C.; et al. Distinct Fibroblast Lineages Determine Dermal Architecture in Skin Development and Repair. Nature 2013, 504, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Philippeos, C.; Telerman, S.B.; Oulès, B.; Pisco, A.O.; Shaw, T.J.; Elgueta, R.; Lombardi, G.; Driskell, R.R.; Soldin, M.; Lynch, M.D.; et al. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. J. Invest. Dermatol. 2018, 138, 811–825. [Google Scholar] [CrossRef] [PubMed]
- Ganier, C.; Rognoni, E.; Goss, G.; Lynch, M.; Watt, F.M. Fibroblast Heterogeneity in Healthy and Wounded Skin. Cold Spring Harb. Perspect. Biol. 2022, 14, a041238. [Google Scholar] [CrossRef]
- Mascharak, S.; Griffin, M.; Talbott, H.E.; Guo, J.L.; Parker, J.; Morgan, A.G.; Valencia, C.; Kuhnert, M.M.; Li, D.J.; Liang, N.E.; et al. Inhibiting Mechanotransduction Prevents Scarring and Yields Regeneration in a Large Animal Model. Sci. Transl. Med. 2026, 17, eadt6387. [Google Scholar] [CrossRef]
- Györfi, A.-H.; Matei, A.-E.; Fuchs, M.; Liang, C.; Rigau, A.R.; Hong, X.; Zhu, H.; Luber, M.; Bergmann, C.; Dees, C.; et al. Engrailed 1 Coordinates Cytoskeletal Reorganization to Induce Myofibroblast Differentiation. J. Exp. Med. 2021, 218, e20201916. [Google Scholar] [CrossRef]
- Jiang, D.; Rinkevich, Y. Defining Skin Fibroblastic Cell Types beyond CD90. Front. Cell Dev. Biol. 2018, 6, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Des Parkin, J.; San Antonio, J.D.; Persikov, A. V.; Dagher, H.; Dalgleish, R.; Jensen, S.T.; Jeunemaitre, X.; Savige, J. The Collαgen III Fibril Has a “Flexi-Rod” Structure of Flexible Sequences Interspersed with Rigid Bioactive Domains Including Two with Hemostatic Roles. PLoS One 2017, 12. [Google Scholar] [CrossRef]
- Cuttle, L.; Nataatmadja, M.; Fraser, J.F.; Kempf, M.; Kimble, R.M.; Hayes, M.T. Collagen in the Scarless Fetal Skin Wound: Detection with Picrosirius-Polarization. Wound Repair Regen. 2005, 13, 198–204. [Google Scholar] [CrossRef]
- Sriram, G.; Bigliardi, P.L.; Bigliardi-Qi, M. Fibroblast Heterogeneity and Its Implications for Engineering Organotypic Skin Models in Vitro. Eur. J. Cell Biol. 2015. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; She, Z.; Fan, K.; Xu, C.; Chu, B.; Chen, C.; Shi, S.; Tan, R. Collagen/Chitosan Based Two-Compartment and Bi-Functional Dermal Scaffolds for Skin Regeneration. Mater. Sci. Eng. C 2015, 52, 155–162. [Google Scholar] [CrossRef]
- Michopoulou, A.; Koliakou, E.; Terzopoulou, Z.; Rousselle, P.; Palamidi, A.; Doxakis, A.; Konstantinidou, P.; Roig-Rosello, E.; Demiri, E.; Bikiaris, D. Benefit of Coupling Heparin to Crosslinked Collagen I/III Scaffolds for Human Dermal Fibroblast Subpopulations’ Tissue Growth No Title. J. Biomed. Mater. Res. Part A 2022, 110. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.-M. Skin Epidermis and Barrier Function. Int. J. Mol. Sci. 2021, 22. [Google Scholar] [CrossRef]

| Properties | ENFs (En1– Lineage-Negative Fibroblasts) | EPFs (En1+ Lineage-Positive Fibroblasts) |
|---|---|---|
| Developmental Timing | Early embryonic dermis; predominant before mid-gestation [19,20] | Emerge later in development; dominant postnatally [19,20] |
| Functional Role in Wounds | Regenerative; support restoration of dermal architecture and appendages [19,21,110] | Pro-fibrotic; major contributors to scar ECM and myofibroblast formation [19,110,111,112] |
| Transcriptional Signatures | Developmental genes, ECM remodeling, and reduced contractile gene expression [19] | High collagen I expression, cross-linking enzymes, contractile machinery, myofibroblast markers [19] |
| Mechanotransduction Sensitivity | Lower YAP/TAZ activation; tolerant of soft/low-tension environments [110] | High YAP/TAZ activation; responsive to stiffness and tension; mechanosensitive profibrotic signaling [110] |
| Typical ECM deposition | Produce loose, fetal-like matrix rich in HA and collagen III [17] | Produce dense, aligned, collagen-I–rich ECM with greater cross-linking [19] |
| Spatial Localization (Adult) | Reduced pool; more papillary-like transcriptional identity [31] | Expanded pool; more reticular-like / deep dermal identity [31] |
| Plasticity / Reprogrammability | High plasticity, fetal-like | Relatively fixed, stabilized by epigenetic and mechanical cues [110] |
| Response to Injury | Promote remodeling and reconstitution [19,20,95] | Drive fibrosis, contraction, and scar deposition [19,20,95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
