Submitted:
29 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Visible and Thermal Imaging
1.2. Thermal Vision Systems
2. Materials and Methods
2.1. Aim and Research Questions
2.2. Equipment Used
2.3. Mounting Configuration and Observation Geometry
2.4. Functional Verification of the System
2.5. Frame Preparation for Analysis
2.6. Extraction of Temperature Information
2.7. Metrics for Thermal Image Quality and Detectability
2.8. Proxy Thermal Image Quality Metrics (8-bit) and Non-Uniformity Indicators
2.9. Distance-to-Pedestrian Estimation from a Single Frame (Monocular, Height-Based)
2.10. Pixel Footprint and Percentage Occupancy (POR)
3. Results
3.1. Qualitative Observations: Detectability Under Low Illumination and Glare
3.2. Issues and Artefacts Observed at Low Temperatures
3.3. Proxy Noise and Uniformity Analysis (8-bit)
3.4. Comparative Analysis of Thermal Frames Captured with UTi260M versus UTi260T
3.5. Geometric Measurements from UTi260M Frames (Pedestrian Height 195 cm)
3.6. Practical Observation Range
4. Discussion and Limitations
4.1. Interpretation of Results and Applicability
4.2. Environmental Effects and Observed Artefacts
4.3. Limitations of Data and Methodology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Abbreviations
| MWIR | Mid-Wave Infrared |
| IR | Infrared |
| LWIR | Long-wave Infrared |
| AGC | Automatic Gain Control |
| NUC | Non-Uniformity Correction |
| ADAS | Advanced Driver Assist Systems |
| NEDT | Noise-Equivalent Temperature Difference |
| ROI | Region of Interest |
| DN | Digital Numbers |
| FPN | Fixed Pattern Noise |
| SNR | Signal-to-Noise Ratio |
| POR | Pixel Occupancy Ratio |
| FOV | Field of View |
| HVAC | Heating, Ventilation and Air Conditioning |
References
- Alldieck, T.; Bahnsen, C.; Moeslund, T. Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring. Sensors 2016, 16 1947. [Google Scholar] [CrossRef] [PubMed]
- Pettirsch, A.; Garcia-Hernandez, A. New generation thermal traffic sensor: A novel dataset and monocular 3D thermal vision framework. Knowledge-Based Systems, Volume Volume 315(2025), 113334. [CrossRef]
- DONA, R.; MATTAS, K.; VASS, S.; DELUBAC, G.; MATIAS, J. Thermal Cameras and Their Safety Implications for Pedestrian Protection: A Mixed Empirical and Simulation-Based Characterization. In TRANSPORTATION RESEARCH RECORD, 2679; SAGE PUBLICATIONS INC; Volume 3, 2025, pp. 404–421. Available online: https://data.europa.eu/doi/10.1177/03611981241278346.
- Wessapan, T; Rattanadecho, P. Influence of ambient temperature on heat transfer in the human eye during exposure to electromagnetic fields at 900 MHz. International Journal of Heat and Mass Transfer 2014, 70, 378–388. [Google Scholar] [CrossRef]
- Kulacki, Francis A. Handbook of Thermal Science and Engineering; (print and electronic bundle); ISBN 978-3-319-26694-7 ISBN 978-3-319-26695-4 (eBook) ISBN 978-3-319-28573-3. [CrossRef]
- Hall, John E.; Hall, Michael E. GUYTON AND HALL TEXTBOOK OF MEDICAL PHYSIOLOGY; 2026; ISBN 978-0-443-11101-3. ISBN: 978-0-443-28109-9. [Google Scholar]
- Tasgaonkar, P.P.; Garg, R.D.; Garg, P.K. Vehicle Detection and Traffic Estimation with Sensors Technologies for Intelligent Transportation Systems. In Sensing and Imaging; 2020; p. 21. [Google Scholar] [CrossRef]
- Ankit Dilip Yawale*, P. V. B. R. PEDESTRAIN DETECTION BY VIDEO PROCESSING USING THERMAL AND NIGHT VISION SYSTEM. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 2017, 6(1), 29–38. [CrossRef]
- Yoneyama, A.; Yeh, C.-H.; Kuo, C.-C. J. Robust vehicle and traffic information extraction for highway surveillance. EURASIP Journal on Advances in Signal Processing 2005, vol. 2005(Article ID 912501), 2305–2321. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Kawata, S.; Nakamiya, T. Vehicle detection even in poor visibility conditions using infrared thermal images and its application to road traffic flow monitoring. In Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering; Sobh, T., Elleithy, K., Eds.; Springer Science+Business Media: New York, NY, USA, 2013; pp. 997–1009. [Google Scholar]
- Casado-Sanz, N.; Guirao, B.; Lara Galera, A.; Attard, M. Investigating the Risk Factors Associated with the Severity of the Pedestrians Injured on Spanish Crosstown Roads. Sustainability 2019, 11, 5194. [Google Scholar] [CrossRef]
- Zangenehpour, S.; Miranda-Moreno, L. F.; Saunier, N. Automated classification based on video data at intersections with heavy pedestrian and bicycle traffic: methodology and application. Transportation Research Part C: Emerging Technologies 2015, vol. 56, 161–176. [Google Scholar] [CrossRef]
- Fu, Ting; et al. Automatic Traffic Data Collection under Varying Lighting and Temperature Conditions in Multimodal Environments: Thermal versus Visible Spectrum Video-Based Systems. Journal of Advanced Transportation 2017, 2017, 1–15. [Google Scholar] [CrossRef]
- Available online: https://2012books.lardbucket.org/books/beginning-psychology/s08-02-seeing.html.
- Faundez-Zanuy, Marcos; Mekyska, Jiří; Espinosa-Duró, Virginia. On the focusing of thermal images. Volume 2011, Volume 32(Issue 11), 1548–1557. [Google Scholar] [CrossRef]
- Available online: https://www.icnirp.org/en/frequencies/infrared/index.html.
- Beg, M. S.; Ismail, M. Y.; Badrulhisam, N. H.; Siswanto, I.; Gunadi, G. “Improving Vehicle Assistance Systems: Evaluation of Augmented Capabilities through Infrared Thermal Camera Integration”. Int. J. Automot. Mech. Eng. 2025, vol. 22(no. 1), 12236–12252. [Google Scholar] [CrossRef]
- Farooq, M. A.; Shariff, W.; O’Callaghan, D.; Merla, A.; Corcoran, P. On the Role of Thermal Imaging in Automotive Applications: A Critical Review. In IEEE Access; Crossref, 2023; Vol. 11, pp. 25152–25173. [Google Scholar]
- Tashev, A.; Dimitrov, E. Investigation of LPG influence on cylinder pressure of VW 1.9D diesel engine operating in dual-fuel mode. AIP Conf. Proc. vol. 3274(060003), 2025. [CrossRef]
- P. Mitev “Development of a Training Station for the Orientation of Dice Parts with Machine Vision”. Eng. Proc. 2024, vol. 70, no.1, https://doi.org/10.3390/engproc2024070057HYQUIP Limited, A4FM Series 10 & 30 Size 71 to 1000: https://hyquip.co.uk/fixed-displacement-motors/4147-bosch-rexroth-fixed-displacementmotors- a4fm.html. [CrossRef]
- Wolf, A.; Pezoa, J.E.; Figueroa, M. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras. Sensors 2016, 16, 1121. [Google Scholar] [CrossRef] [PubMed]
- König, S.; Gutschwager, B.; Taubert, R. D.; Hollandt, J. : Metrological characterization and calibration of thermographic cameras for quantitative temperature measurement. J. Sens. Sens. Syst. 9, 425–442. [CrossRef]
- Igual, J. Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras. Electronics 2019, 8, 1284. [Google Scholar] [CrossRef]
- Lee, H.; Kang, M.G. Infrared Image Deconvolution Considering Fixed Pattern Noise. Sensors 2023, 23, 3033. [Google Scholar] [CrossRef] [PubMed]











| Sensor | Uncooled vanadium oxide |
|---|---|
| Range switching | Low temperature (-20°C-150°C), high temperature (0°C-550°C) (auto switching) |
| Modes | Industrial, human body |
| Emissivity | 0.95 (default) 0.01-1.00 |
| IR resolution | 256*192 (49152) |
| Infrared spectral bandwidth | 8-14 µm |
| Thermal sensitivity | <50mK |
| Frame rate | 25Hz |
| Sensor | Uncooled vanadium oxide |
|---|---|
| Temperature measurement range | -20 ℃~150 ℃, 100 ℃~550 ℃ (manual shift) |
| Infrared response band | 8-14 µm |
| IR resolution | 256*192 (49152) |
| Infrared spectral bandwidth | 8-14 µm |
| Thermal sensitivity/NEDT | <50mK |
| Frame rate | 25Hz |
| Temperature measurement resolution | 0.1 ℃ |
| Image | (DN) | Noise Range (DN) | Noise Mode (DN) | (DN) | (DN) | UI = 1−σ/μ | FPN proxy (DN) | SNR proxy | |
|---|---|---|---|---|---|---|---|---|---|
| UTi260T – thermal (pedestrian, frame, Figure 8) | 1.113 | 6 | 35 | 0.905 | 0.968 | 0.962 | 0.125 | 561.77 | n/a* |
| UTi260T – thermal (parked vehicles/street, frame, Figyre 7) | 1.363 | 8 | 150 | 1.273 | 1.197 | 0.993 | 0.229 | 120.16 | n/a* |
| UTi260M – thermal via smartphone (frame, Figure 9) | 0.488 | 3 | 116 | 0.454 | 0.453 | 0.996 | 0.069 | 301.23 | n/a* |
| Visible-light camera (night frame, Figure 8) | 1.293 | 8 | 4 | 1.283 | 0.893 | 0.601 | 0.260 | n/a | n/a |
| Frame | ||||
|---|---|---|---|---|
| Fig. 10 (a) | 1.95 | 6 | 1187 | 384 |
| Fig. 10 (b) | 1.95 | 9 | 1187 | 289 |
| Fig. 10 (c) | 1.95 | 12 | 1187 | 192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
