Submitted:
02 February 2026
Posted:
05 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Clinical Burden and Therapeutic Gap
1.2. Blood-Brain Barrier (BBB) as a Bottleneck for Phytochemicals
1.3. Scope and Organizing Framework
2. The Blood–Brain Barrier (BBB): Architecture, Transport, Heterogeneity
2.1. Neurovascular Unit Architecture
2.2. Transport Pathways and Efflux
2.3. Disease- and Age-Driven Heterogeneity
3. Phytochemicals as Neurotherapeutics: Classes, Liabilities, MOAs
3.1. Polyphenols (Resveratrol, Quercetin, Curcumin)
3.2. Alkaloids (Berberine and Galantamine)
3.3. Terpenoids and Cannabinoids (CBD/THC, Ginkgolides)
3.4. Formulation-Relevant Liabilities and Structure–Activity Relationship (SAR) Flags
4. Nanomedicine Platforms for Blood-Brain Barrier (BBB) Delivery
4.1. Polymeric Nanoparticles (PLGA, PEG-PLGA, and Chitosan)
4.2. Lipid Carriers (Liposomes, Solid Lipid Nanoparticles (SLNs), Nanoemulsions)
4.3. Dendrimers and Micelles
4.4. Inorganic/Carbon Nanostructures
4.5. Hybrid/Biodegradable and Protein Corona Control
4.6. Literature Snapshot
5. Targeting and Stimuli Strategies
5.1. Receptor-Mediated Transcytosis (RMT) Ligands
5.2. Adsorptive and Cell-Penetrating Peptide (CPP) Strategies
5.3. Multivalent/Dual-Targeting Designs
5.4. Stimuli-Responsive Systems
6. Alternative Routes and Device-Enabled Blood-Brain Barrier (BBB) Opening
6.1. Intranasal Nose-to-Brain
6.2. Focused Ultrasound + Microbubbles (FUS)

6.3. Chemical/Osmotic Opening and Convection-Enhanced Delivery (CED)
7. Prodrugs and Transporter Hijacking
7.1. LAT1/MCT1/GLUT1-Targeted Prodrugs
7.2. Lipidization, Soft Drugs, Self-Immolative Linkers
7.3. Solubility Boosters (Cyclodextrins, Co-Crystals, Ion Pairing)
7.4. Nano–Prodrug Conjugates
8. Biogenic and Exosome-Mimetic Vesicles
8.1. Mammalian Exosomes
8.2. Plant-Derived Extracellular Vesicles
8.3. Synthetic Mimetics
9. Translational Models and Decision-Enabling Endpoints
9.1. In Vitro Models
9.2. In Vivo Models and Species Differences
9.3. Quantitative PK Endpoints
9.4. Imaging and Biomarker Readouts
10. Clinical Landscape and Case Snapshots
10.1. Neuro-Oncology
10.2. Neurodegeneration
10.3. Psychiatric and Pain Indications
10.4. Snapshot
11. Material Safety and Immunogenicity
11.1. Hemolysis, Complement Activation, Microglial Responses
11.2. Hemocompatibility and Neuroinflammation Assays
11.3. Biodistribution and Clearance
11.4. CMC/GMP and Critical Quality Attributes (CQAs)
11.5. Regulatory Expectations
12. Data Science, Modeling, Artificial Intelligence (AI)-Guided Design
12.1. BBB Permeability Prediction and Polypharmacology
12.2. Multi-Objective Formulation Optimization
12.3. PBPK/PKPD and Digital Twins
13. Research Gaps and Concrete Strategies
13.1. Standardized Human-Relevant PK Endpoints
13.2. Humanized BBB Models with Disease Fidelity
13.3. Prodrug Translation Playbook
13.4. Long-Term Safety and Immunogenicity Registries
13.5. Manufacturability and QC for Complex Carriers
13.6. Clinical Trial Design Upgrades
14. Roadmap: Near-Term vs Long-Term
14.1. Near-Term (2–4 Years)
14.2. Longer-Term (5–10+ Years)
15. Clinical Applications and Translational Implications
15. Conclusion and Translational Implications
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABC | ATP-binding cassette |
| ApoE | apolipoprotein E |
| AUC | area under the curve |
| BBB | blood-brain barrier |
| BCRP | breast cancer resistance protein |
| CBD | cannabidiol |
| CED | convection-enhanced delivery |
| CMC | chemistry, manufacturing, and controls |
| CMT | carrier-mediated transport |
| CNS | central nervous system |
| CPP | cell-penetrating peptide |
| CQA | critical quality attribute |
| CSF | cerebrospinal fluid |
| CYP | cytochrome P450 |
| DOI | digital object identifier |
| EVS | extracellular vesicles |
| FUS | focused ultrasound |
| GDNF | glial-derived neurotrophic factor |
| GLUT1 | glucose transporter 1 |
| GMP | good manufacturing practice |
| IPSC | induced pluripotent stem cell |
| IR | insulin receptor |
| ISF | interstitial fluid |
| KM | michaelis constant |
| KP | uu, unbound brain-to-plasma partition coefficient |
| KP,BRAIN | brain-to-plasma partition coefficient |
| KP,UU | unbound brain-to-plasma partition coefficient |
| K_D | dissociation constant |
| K_P,BRAIN | brain-to-plasma partition coefficient |
| K_P,UU | unbound brain-to-plasma partition coefficient |
| LAT1 | large neutral amino acid transporter 1 |
| LD | linear dichroism |
| LDL | low-density lipoprotein |
| LDLR | low-density lipoprotein receptor |
| LOGD | distribution coefficient |
| LRP1 | low-density lipoprotein receptor-related protein 1 |
| MCT1 | monocarboxylate transporter 1 |
| MCTS | monocarboxylate transporters |
| MRI | magnetic resonance imaging |
| MRPS | multidrug resistance-associated proteins |
| NHP | non-human primate |
| NLCS | nanostructured lipid carriers |
| NPS | nanoparticles |
| NR | not reported |
| NVU | neurovascular unit |
| P-gp | P-glycoprotein |
| PAMAM | poly(amidoamine) |
| PAT | process analytical technology |
| PBPK | physiologically based pharmacokinetic |
| PCD | passive cavitation detection |
| PD | pharmacodynamics |
| PDEVS | plant-derived extracellular vesicles |
| PDI | polydispersity index |
| PEG | polyethylene glycol |
| PET | positron emission tomography |
| PK | pharmacokinetics |
| PKA | acid dissociation constant |
| PKPD | pharmacokinetic-pharmacodynamic |
| PLGA | poly(lactic-co-glycolic acid) |
| QBD | quality by design |
| QTPP | quality target product profile |
| RESVERATROL/CURCUMIN | including dual loading) gated by reproducible size/PDI, loading, and stability under scalable unit operations |
| RMT | receptor-mediated transcytosis |
| RVG | rabies virus glycoprotein |
| SIRNA | small interfering RNA |
| SLCS | solute carrier transporters |
| SLNS | solid lipid nanoparticles |
| SULT | sulfotransferases |
| TAT | trans-activator of transcription |
| TEER | transendothelial electrical resistance |
| TF | transferrin |
| TFR | transferrin receptor |
| THC | Δ9-tetrahydrocannabinol |
| UGT | UDP-glucuronosyltransferases |
| VEGF | vascular endothelial growth factor |
| VMAX | maximum transport rate |
References
- Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol 2024, 23, 344–381. [CrossRef] [PubMed]
- Arias, D.; Saxena, S.; Verguet, S. Quantifying the global burden of mental disorders and their economic value. EClinicalMedicine 2022, 54, 101675. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M. Parkinson's Disease: Bridging Gaps, Building Biomarkers, and Reimagining Clinical Translation. Cells 2025, 14. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 2023, 8, 217. [Google Scholar] [CrossRef]
- Gribkoff, V.K.; Kaczmarek, L.K. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017, 120, 11–19. [Google Scholar] [CrossRef]
- Howe, J.R.t.; Bear, M.F.; Golshani, P.; Klann, E.; Lipton, S.A.; Mucke, L.; Sahin, M.; Silva, A.J. The mouse as a model for neuropsychiatric drug development. Curr Biol 2018, 28, R909–r914. [Google Scholar] [CrossRef]
- Tanaka, M. From Monoamines to Systems Psychiatry: Rewiring Depression Science and Care (1960s–2025). Biomedicines 2025, 14, 35. [Google Scholar] [CrossRef]
- Naoi, M.; Wu, Y.; Maruyama, W.; Shamoto-Nagai, M. Phytochemicals Modulate Biosynthesis and Function of Serotonin, Dopamine, and Norepinephrine for Treatment of Monoamine Neurotransmission-Related Psychiatric Diseases. Int J Mol Sci 2025, 26. [Google Scholar] [CrossRef]
- Chen, X.; Xu, D.; Yu, J.; Song, X.J.; Li, X.; Cui, Y.L. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024, 16. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, M.; Chen, X.; Zhang, R.; Le, A.; Hong, M.; Zhang, Y.; Jia, L.; Zang, W.; Jiang, C.; et al. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis 2023, 14, 858–878. [Google Scholar] [CrossRef]
- Szabó, Á.; Galla, Z.; Spekker, E.; Martos, D.; Szűcs, M.; Fejes-Szabó, A.; Fehér, Á.; Takeda, K.; Ozaki, K.; Inoue, H.; et al. Behavioral Balance in Tryptophan Turmoil: Regional Metabolic Rewiring in Kynurenine Aminotransferase II Knockout Mice. Cells 2025, 14. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Z.; Li, A.; Liu, R.; Yang, H.; Xia, X. The Phytochemical Potential for Brain Disease Therapy and the Possible Nanodelivery Solutions for Brain Access. Front Oncol 2022, 12, 936054. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.; Rana, R.; Tripathi, S.; Siddiqui, S.; Yadav, P.K.; Yadav, P.N.; Chourasia, M.K. Recent Advancements in Nanocarrier-assisted Brain Delivery of Phytochemicals Against Neurological Diseases. Neurochem Res 2023, 48, 2936–2968. [Google Scholar] [CrossRef] [PubMed]
- Rassu, G.; Sorrenti, M.; Catenacci, L.; Pavan, B.; Ferraro, L.; Gavini, E.; Bonferoni, M.C.; Giunchedi, P.; Dalpiaz, A. Conjugation, Prodrug, and Co-Administration Strategies in Support of Nanotechnologies to Improve the Therapeutic Efficacy of Phytochemicals in the Central Nervous System. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Chehadi, A.C.; Pereira de Lima, E.; Detregiachi, C.R.P.; Santos de Argollo Haber, R.; Catharin, V.; Fornari Laurindo, L.; Engracia Valenti, V.; Machado Galhardi, C.; Tanaka, M.; Maria Barbalho, S. Harnessing Dietary Tryptophan: Bridging the Gap Between Neurobiology and Psychiatry in Depression Management. Int J Mol Sci 2026, 27. [Google Scholar] [CrossRef]
- Endo, H.; Ogasawara, M.; Tega, Y.; Kubo, Y.; Hosoya, K.I.; Akanuma, S.I. Upregulation of P-Glycoprotein and Breast Cancer Resistance Protein Activity in Newly Developed in Vitro Rat Blood-Brain Barrier Spheroids Using Advanced Glycation End-Products. Biol Pharm Bull 2024, 47, 1893–1903. [Google Scholar] [CrossRef]
- Strazielle, N.; Ghersi-Egea, J.F. Factors affecting delivery of antiviral drugs to the brain. Rev Med Virol 2005, 15, 105–133. [Google Scholar] [CrossRef]
- Waterhouse, R.N. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 2003, 5, 376–389. [Google Scholar] [CrossRef]
- Ayaz, M.; Mosa, O.F.; Nawaz, A.; Hamdoon, A.A.E.; Elkhalifa, M.E.M.; Sadiq, A.; Ullah, F.; Ahmed, A.; Kabra, A.; Khan, H.; et al. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. Phytomedicine 2024, 124, 155272. [Google Scholar] [CrossRef]
- Lehoczki, A.; Fekete, M.; Jarecsny, T.; Zábó, V.; Szappanos, Á.; Csípő, T.; Lipécz, Á.; Major, D.; Fazekas-Pongor, V.; Varga, P.; et al. The Neuroprotective Role of Curcumin: From Molecular Pathways to Clinical Translation-A Narrative Review. Nutrients 2025, 17. [Google Scholar] [CrossRef]
- Nunes, Y.C.; Mendes, N.M.; Pereira de Lima, E.; Chehadi, A.C.; Lamas, C.B.; Haber, J.F.S.; Dos Santos Bueno, M.; Araújo, A.C.; Catharin, V.C.S.; Detregiachi, C.R.P.; et al. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients 2024, 16. [Google Scholar] [CrossRef]
- Laurindo, L.F.; de Carvalho, G.M.; de Oliveira Zanuso, B.; Figueira, M.E.; Direito, R.; de Alvares Goulart, R.; Buglio, D.S.; Barbalho, S.M. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Marton, L.T.; Barbalho, S.M.; Sloan, K.P.; Sloan, L.A.; Goulart, R.A.; Araújo, A.C.; Bechara, M.D. Curcumin, autoimmune and inflammatory diseases: going beyond conventional therapy - a systematic review. Crit Rev Food Sci Nutr 2022, 62, 2140–2157. [Google Scholar] [CrossRef] [PubMed]
- Matias, J.N.; Achete, G.; Campanari, G.; Guiguer É, L.; Araújo, A.C.; Buglio, D.S.; Barbalho, S.M. A systematic review of the antidepressant effects of curcumin: Beyond monoamines theory. Aust N Z J Psychiatry 2021, 55, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Kaspute, G.; Ramanavicius, A.; Prentice, U. Natural drug delivery systems for the treatment of neurodegenerative diseases. Mol Biol Rep 2025, 52, 217. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.D.; Valdés, A.; Gallego, R.; Suárez-Montenegro, Z.J.; Alarcón, M.; Ibañez, E.; Alvarez-Rivera, G.; Cifuentes, A. Blood-Brain Barrier Permeability Study of Potential Neuroprotective Compounds Recovered From Plants and Agri-Food by-Products. Front Nutr 2022, 9, 924596. [Google Scholar] [CrossRef]
- Shimazu, R.; Anada, M.; Miyaguchi, A.; Nomi, Y.; Matsumoto, H. Evaluation of Blood-Brain Barrier Permeability of Polyphenols, Anthocyanins, and Their Metabolites. J Agric Food Chem 2021, 69, 11676–11686. [Google Scholar] [CrossRef]
- Musa, I.; Rotaru-Zavaleanu, A.D.; Sfredel, V.; Aldea, M.; Gresita, A.; Glavan, D.G. Post-Stroke Recovery: A Review of Hydrogel-Based Phytochemical Delivery Systems. Gels 2025, 11. [Google Scholar] [CrossRef]
- Tanaka, M.; Vécsei, L. From Microbial Switches to Metabolic Sensors: Rewiring the Gut-Brain Kynurenine Circuit. Biomedicines 2025, 13. [Google Scholar] [CrossRef]
- Figueiredo Godoy, A.C.; Frota, F.F.; Araújo, L.P.; Valenti, V.E.; Pereira, E.; Detregiachi, C.R.P.; Galhardi, C.M.; Caracio, F.C.; Haber, R.S.A.; Fornari Laurindo, L.; et al. Neuroinflammation and Natural Antidepressants: Balancing Fire with Flora. Biomedicines 2025, 13. [Google Scholar] [CrossRef]
- Karad, V.; Gupta, G.L. Phytochemicals encouraging neurotrophic pathways: brain-derived neurotrophic factors as molecular targets in depression. Naunyn Schmiedebergs Arch Pharmacol 2025, 398, 15075–15094. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.M. Overcoming the Blood-Brain Barrier: Advanced Strategies in Targeted Drug Delivery for Neurodegenerative Diseases. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef] [PubMed]
- Zha, S.; Liu, H.; Li, H.; Li, H.; Wong, K.L.; All, A.H. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier. ACS Nano 2024, 18, 1820–1845. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ali, S.A.; Kumar, M.; Jahan, I.; Hak, J. Emerging Strategies for Targeted Drug Delivery across the Blood–Brain Barrier in Neurological Disorder. Current Pharmaceutical Research 2025, 1–14. [CrossRef]
- Zou, L.; Chien, H.C.; Pade, D.; Li, Y.; Nguyen, M.; Bhamidipati, R.K.; Wang, Z.; Enogieru, O.J.; Wahlstrom, J. Considerations in K(p,uu,brain)-based Strategy for Selecting CNS-targeted Drug Candidates with Sufficient Target Coverage and Substantial Pharmacodynamic Effect. Aaps j 2025, 27, 52. [Google Scholar] [CrossRef]
- Gonen, O.M.; Porter, T.; Wang, B.; Xue, F.; Ma, Y.; Song, L.; Sun, P.; Fan, W.; Shen, Y. Safety, Pharmacokinetics and Target Engagement of a Novel Brain Penetrant RIPK1 Inhibitor (SIR9900) in Healthy Adults and Elderly Participants. Clin Transl Sci 2025, 18, e70151. [Google Scholar] [CrossRef]
- Tanaka, M.; Szatmári, I.; Vécsei, L. Quinoline Quest: Kynurenic Acid Strategies for Next-Generation Therapeutics via Rational Drug Design. Pharmaceuticals (Basel) 2025, 18. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, M.; Huang, Y.; He, X.; Yuan, J.; Dang, B. Research developments in the neurovascular unit and the blood-brain barrier (Review). Biomed Rep 2025, 22, 88. [Google Scholar] [CrossRef]
- McConnell, H.L.; Mishra, A. Cells of the Blood-Brain Barrier: An Overview of the Neurovascular Unit in Health and Disease. Methods Mol Biol 2022, 2492, 3–24. [Google Scholar] [CrossRef]
- Schaeffer, S.; Iadecola, C. Revisiting the neurovascular unit. Nat Neurosci 2021, 24, 1198–1209. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, M.; Huang, Y.; He, X.; Yuan, J.; Dang, B. Research developments in the neurovascular unit and the blood-brain barrier. Biomedical Reports 2025, 22, 88. [Google Scholar] [CrossRef] [PubMed]
- Divecha, Y.A.; Rampes, S.; Tromp, S.; Boyanova, S.T.; Fleckney, A.; Fidanboylu, M.; Thomas, S.A. The microcirculation, the blood-brain barrier, and the neurovascular unit in health and Alzheimer disease: The aberrant pericyte is a central player. Pharmacol Rev 2025, 77, 100052. [Google Scholar] [CrossRef] [PubMed]
- Kugler, E.C.; Greenwood, J.; MacDonald, R.B. The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Front Cell Dev Biol 2021, 9, 732820. [Google Scholar] [CrossRef] [PubMed]
- Sasson, E.; Anzi, S.; Bell, B.; Yakovian, O.; Zorsky, M.; Deutsch, U.; Engelhardt, B.; Sherman, E.; Vatine, G.; Dzikowski, R. Nano-scale architecture of blood-brain barrier tight-junctions. Elife 2021, 10, e63253. [Google Scholar] [CrossRef]
- Alluri, H.; Peddaboina, C.S.; Tharakan, B. Evaluation of Tight Junction Integrity in Brain Endothelial Cells Using Confocal Microscopy. Methods Mol Biol 2024, 2711, 257–262. [Google Scholar] [CrossRef]
- Gowrikumar, S.; Tarudji, A.; McDonald, B.Z.; Balusa, S.S.; Kievit, F.M.; Dhawan, P. Claudin-1 impairs blood-brain barrier by downregulating endothelial junctional proteins in traumatic brain injury. Tissue Barriers 2025, 13, 2470482. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Musolino, V.; Scicchitano, M.; Carresi, C.; Scarano, F.; Bosco, F.; Nucera, S.; Ruga, S.; Zito, M.C.; et al. The "Frail" Brain Blood Barrier in Neurodegenerative Diseases: Role of Early Disruption of Endothelial Cell-to-Cell Connections. Int J Mol Sci 2018, 19. [Google Scholar] [CrossRef]
- Potjewyd, G.; Moxon, S.; Wang, T.; Domingos, M.; Hooper, N.M. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends Biotechnol 2018, 36, 457–472. [Google Scholar] [CrossRef]
- Mäe, M.A.; He, L.; Nordling, S.; Vazquez-Liebanas, E.; Nahar, K.; Jung, B.; Li, X.; Tan, B.C.; Chin Foo, J.; Cazenave-Gassiot, A.; et al. Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. Circ Res 2021, 128, e46–e62. [Google Scholar] [CrossRef]
- Guérit, S.; Fidan, E.; Macas, J.; Czupalla, C.J.; Figueiredo, R.; Vijikumar, A.; Yalcin, B.H.; Thom, S.; Winter, P.; Gerhardt, H.; et al. Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Prog Neurobiol 2021, 199, 101937. [Google Scholar] [CrossRef]
- Tanaka, M. Neurogenesis and Neuroinflammation in Dialogue: Mapping Gaps, Modulating Microglia, Rewiring Aging. Cells 2026, 15. [Google Scholar] [CrossRef]
- Reed, M.J.; Damodarasamy, M.; Banks, W.A. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer's disease. Tissue Barriers 2019, 7, 1651157. [Google Scholar] [CrossRef]
- Ding, L.; Kshirsagar, P.; Agrawal, P.; Murry, D.J. Crossing the Blood-Brain Barrier: Innovations in Receptor- and Transporter-Mediated Transcytosis Strategies. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef] [PubMed]
- Terstappen, G.C.; Meyer, A.H.; Bell, R.D.; Zhang, W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021, 20, 362–383. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. Transport of small molecules through the blood-brain barrier: biology and methodology. Advanced drug delivery reviews 1995, 15, 5–36. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Wu, J.; Xie, Y.; Kim, S.; Michelhaugh, S.; Jiang, J.; Mittal, S.; Sanai, N.; Li, J. Protein Expression and Functional Relevance of Efflux and Uptake Drug Transporters at the Blood-Brain Barrier of Human Brain and Glioblastoma. Clin Pharmacol Ther 2020, 107, 1116–1127. [Google Scholar] [CrossRef]
- Latif, S.; Kang, Y.S. Blood-Brain Barrier Solute Carrier Transporters and Motor Neuron Disease. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Tashima, T. Smart Strategies for Therapeutic Agent Delivery into Brain across the Blood-Brain Barrier Using Receptor-Mediated Transcytosis. Chem Pharm Bull (Tokyo) 2020, 68, 316–325. [Google Scholar] [CrossRef]
- Stanimirovic, D.B.; Sandhu, J.K.; Costain, W.J. Emerging Technologies for Delivery of Biotherapeutics and Gene Therapy Across the Blood-Brain Barrier. BioDrugs 2018, 32, 547–559. [Google Scholar] [CrossRef]
- Kucharz, K.; Kristensen, K.; Johnsen, K.B.; Lund, M.A.; Lønstrup, M.; Moos, T.; Andresen, T.L.; Lauritzen, M.J. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat Commun 2021, 12, 4121. [Google Scholar] [CrossRef]
- Hersh, A.M.; Alomari, S.; Tyler, B.M. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Yang, J.; Ronaldson, P.T.; Davis, T.P. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front Physiol 2020, 11, 914. [Google Scholar] [CrossRef]
- Keaney, J.; Walsh, D.M.; O'Malley, T.; Hudson, N.; Crosbie, D.E.; Loftus, T.; Sheehan, F.; McDaid, J.; Humphries, M.M.; Callanan, J.J.; et al. Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Sci Adv 2015, 1, e1500472. [Google Scholar] [CrossRef] [PubMed]
- Nozohouri, E.; Noorani, B.; Patel, D.; Ahn, Y.; Zoubi, S.; Bickel, U. Assessing blood-brain barrier (BBB) integrity in an Alzheimer's disease mouse model: is the BBB globally or locally disrupted? Fluids Barriers CNS 2025, 22, 79. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, F.M.G.; Markert, G.; Deutsch, G.; Antonara, M.; Faaij, N.; Bartelink, I.; Noske, D.; Vandertop, W.P.; Bender, A.; Westerman, B.A. Explaining Blood-Brain Barrier Permeability of Small Molecules by Integrated Analysis of Different Transport Mechanisms. J Med Chem 2023, 66, 7253–7267. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Barras, A.; Boukherroub, R.; Tseng, C.L.; Devos, D.; Burnouf, T.; Neuhaus, W.; Szunerits, S. Enhancing paracellular and transcellular permeability using nanotechnological approaches for the treatment of brain and retinal diseases. Nanoscale Horiz 2023, 9, 14–43. [Google Scholar] [CrossRef]
- Nájera-Maldonado, L.; Parra-González, M.; Peralta-Cuevas, E.; Gutierrez-Onofre, A.J.; Garcia-Atutxa, I.; Villanueva-Flores, F. Cracking the Blood-Brain Barrier Code: Rational Nanomaterial Design for Next-Generation Neurological Therapies. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Smith, Q.R. Carrier-mediated transport to enhance drug delivery to brain. In Proceedings of the International Congress Series, 2005; pp. 63–74. [Google Scholar]
- Ozgür, B.; Puris, E.; Brachner, A.; Appelt-Menzel, A.; Oerter, S.; Balzer, V.; Holst, M.R.; Christiansen, R.F.; Hyldig, K.; Buckley, S.T.; et al. Characterization of an iPSC-based barrier model for blood-brain barrier investigations using the SBAD0201 stem cell line. Fluids Barriers CNS 2023, 20, 96. [Google Scholar] [CrossRef]
- Li, Y.; Liu, R.; Zhao, Z. Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Hervé, F.; Ghinea, N.; Scherrmann, J.M. CNS delivery via adsorptive transcytosis. Aaps j 2008, 10, 455–472. [Google Scholar] [CrossRef]
- Baghirov, H. Receptor-mediated transcytosis of macromolecules across the blood-brain barrier. Expert Opin Drug Deliv 2023, 20, 1699–1711. [Google Scholar] [CrossRef] [PubMed]
- Pfau, S.J.; Langen, U.H.; Fisher, T.M.; Prakash, I.; Nagpurwala, F.; Lozoya, R.A.; Lee, W.A.; Wu, Z.; Gu, C. Characteristics of blood-brain barrier heterogeneity between brain regions revealed by profiling vascular and perivascular cells. Nat Neurosci 2024, 27, 1892–1903. [Google Scholar] [CrossRef] [PubMed]
- Noumbissi, M.E.; Galasso, B.; Stins, M.F. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 2018, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Velasco, A.I.; Clemente-Suárez, V.J. Impact of Peripheral Inflammation on Blood-Brain Barrier Dysfunction and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2025, 26. [Google Scholar] [CrossRef]
- Wilhelm, I.; Nyúl-Tóth, Á.; Suciu, M.; Hermenean, A.; Krizbai, I.A. Heterogeneity of the blood-brain barrier. Tissue Barriers 2016, 4, e1143544. [Google Scholar] [CrossRef]
- Ha, I.H.; Lim, C.; Kim, Y.; Moon, Y.; Han, S.H.; Moon, W.J. Regional Differences in Blood-Brain Barrier Permeability in Cognitively Normal Elderly Subjects: A Dynamic Contrast-Enhanced MRI-Based Study. Korean J Radiol 2021, 22, 1152–1162. [Google Scholar] [CrossRef]
- Schaffenrath, J.; Huang, S.F.; Wyss, T.; Delorenzi, M.; Keller, A. Characterization of the blood-brain barrier in genetically diverse laboratory mouse strains. Fluids Barriers CNS 2021, 18, 34. [Google Scholar] [CrossRef]
- Kurz, C.; Walker, L.; Rauchmann, B.S.; Perneczky, R. Dysfunction of the blood-brain barrier in Alzheimer's disease: Evidence from human studies. Neuropathol Appl Neurobiol 2022, 48, e12782. [Google Scholar] [CrossRef]
- Bravo-Ferrer, I.; Gaasdal-Bech, K.; Colvin, C.; Vaughan, H.J.; Moss, J.; Williams, A.; Díaz Castro, B. Multiregional blood-brain barrier phenotyping identifies the prefrontal cortex as the most vulnerable region to ageing in mice. Brain Commun 2025, 7, fcaf332. [Google Scholar] [CrossRef]
- Chen, T.; Dai, Y.; Hu, C.; Lin, Z.; Wang, S.; Yang, J.; Zeng, L.; Li, S.; Li, W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024, 21, 60. [Google Scholar] [CrossRef]
- de Lima, E.P.; Tanaka, M.; Lamas, C.B.; Quesada, K.; Detregiachi, C.R.P.; Araújo, A.C.; Guiguer, E.L.; Catharin, V.; de Castro, M.V.M.; Junior, E.B.; et al. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024, 12. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Soares, G.; Chopra, H.; Rahman, M.M.; Hasan, Z.; Swain, S.S.; Cavalu, S. Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders. Materials (Basel) 2022, 15. [Google Scholar] [CrossRef] [PubMed]
- Kirit, E.; Gokce, C.; Altun, B.; Yilmazer, A. Nanotherapeutic Strategies for Overcoming the Blood-Brain Barrier: Applications in Disease Modeling and Drug Delivery. ACS Omega 2025, 10, 32606–32625. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Hu, D.; Gao, D.; Butch, C.J.; Wang, Y.; Zheng, H.; Sheng, Z. Recent advances of engineering cell membranes for nanomedicine delivery across the blood-brain barrier. J Nanobiotechnology 2025, 23, 493. [Google Scholar] [CrossRef] [PubMed]
- Pedder, J.H.; Sonabend, A.M.; Cearns, M.D.; Michael, B.D.; Zakaria, R.; Heimberger, A.B.; Jenkinson, M.D.; Dickens, D. Crossing the blood-brain barrier: emerging therapeutic strategies for neurological disease. Lancet Neurol 2025, 24, 246–260. [Google Scholar] [CrossRef]
- Dirir, A.M.; Ali, A.; Hachem, M. Recent Advancements in Lipid Nanoparticles-Based Phytoactives Delivery Systems for Neurodegenerative Diseases. Int J Nanomedicine 2025, 20, 10279–10300. [Google Scholar] [CrossRef]
- Kamath, A.P.; Nayak, P.G.; John, J.; Mutalik, S.; Balaraman, A.K.; Krishnadas, N. Revolutionizing neurotherapeutics: Nanocarriers unveiling the potential of phytochemicals in Alzheimer's disease. Neuropharmacology 2024, 259, 110096. [Google Scholar] [CrossRef]
- de Lima, E.P.; Laurindo, L.F.; Catharin, V.C.S.; Direito, R.; Tanaka, M.; Jasmin Santos German, I.; Lamas, C.B.; Guiguer, E.L.; Araújo, A.C.; Fiorini, A.M.R.; et al. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025, 15. [Google Scholar] [CrossRef]
- Laurindo, L.F.; Santos, A.; Carvalho, A.C.A.; Bechara, M.D.; Guiguer, E.L.; Goulart, R.A.; Vargas Sinatora, R.; Araújo, A.C.; Barbalho, S.M. Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023, 13. [Google Scholar] [CrossRef]
- Buglio, D.S.; Marton, L.T.; Laurindo, L.F.; Guiguer, E.L.; Araújo, A.C.; Buchaim, R.L.; Goulart, R.A.; Rubira, C.J.; Barbalho, S.M. The Role of Resveratrol in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review. J Med Food 2022, 25, 797–806. [Google Scholar] [CrossRef]
- Ciupei, D.; Colişar, A.; Leopold, L.; Stănilă, A.; Diaconeasa, Z.M. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024, 13. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules 2020, 25. [Google Scholar] [CrossRef] [PubMed]
- Grabska-Kobyłecka, I.; Szpakowski, P.; Król, A.; Książek-Winiarek, D.; Kobyłecki, A.; Głąbiński, A.; Nowak, D. Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Arias-Sánchez, R.A.; Torner, L.; Fenton Navarro, B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023, 28. [Google Scholar] [CrossRef]
- Mamun, A.A.; Shao, C.; Geng, P.; Wang, S.; Xiao, J. Polyphenols Targeting NF-κB Pathway in Neurological Disorders: What We Know So Far? Int J Biol Sci 2024, 20, 1332–1355. [Google Scholar] [CrossRef]
- Kaluza, M.; Ksiazek-Winiarek, D.; Szpakowski, P.; Czpakowska, J.; Fijalkowska, J.; Glabinski, A. Polyphenols in the Central Nervous System: Cellular Effects and Liposomal Delivery Approaches. Int J Mol Sci 2025, 26. [Google Scholar] [CrossRef]
- Biswas, P.; Dey, D.; Biswas, P.K.; Rahaman, T.I.; Saha, S.; Parvez, A.; Khan, D.A.; Lily, N.J.; Saha, K.; Sohel, M.; et al. A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L. Polyphenols and bioavailability: an update. Crit Rev Food Sci Nutr 2019, 59, 2040–2051. [Google Scholar] [CrossRef]
- Williamson, G. Bioavailability of Food Polyphenols: Current State of Knowledge. Annu Rev Food Sci Technol 2025, 16, 315–332. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005, 81, 230s–242s. [Google Scholar] [CrossRef]
- Hu, M.; Wu, B.; Liu, Z. Bioavailability of Polyphenols and Flavonoids in the Era of Precision Medicine. Mol Pharm 2017, 14, 2861–2863. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hu, M. Natural polyphenol disposition via coupled metabolic pathways. Expert Opin Drug Metab Toxicol 2007, 3, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Kapetanovic, I.M.; Muzzio, M.; Huang, Z.; Thompson, T.N.; McCormick, D.L. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol 2011, 68, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Kim, J.W.; Cong, R.; Park, J.S.; Nguyen, C.H.B.; Park, K.; Kang, K.; Shim, S.M. Exploring absorption indices for a variety of polyphenols through Caco-2 cell model: insights from permeability studies and principal component analysis. J Sci Food Agric 2025, 105, 6243–6253. [Google Scholar] [CrossRef]
- Martos, D.; Lőrinczi, B.; Szatmári, I.; Vécsei, L.; Tanaka, M. Decoupling Behavioral Domains via Kynurenic Acid Analog Optimization: Implications for Schizophrenia and Parkinson's Disease Therapeutics. Cells 2025, 14. [Google Scholar] [CrossRef]
- Dos Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.A. Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease Therapy. Front Pharmacol 2018, 9, 1192. [Google Scholar] [CrossRef]
- Kabir, M.T.; Uddin, M.S.; Begum, M.M.; Thangapandiyan, S.; Rahman, M.S.; Aleya, L.; Mathew, B.; Ahmed, M.; Barreto, G.E.; Ashraf, G.M. Cholinesterase Inhibitors for Alzheimer's Disease: Multitargeting Strategy Based on Anti-Alzheimer's Drugs Repositioning. Curr Pharm Des 2019, 25, 3519–3535. [Google Scholar] [CrossRef]
- Murakami, T.; Bodor, E.; Bodor, N. Approaching strategy to increase the oral bioavailability of berberine, a quaternary ammonium isoquinoline alkaloid: Part 1. Physicochemical and pharmacokinetic properties. Expert Opin Drug Metab Toxicol 2023, 19, 129–137. [Google Scholar] [CrossRef]
- Abo El-Enin, H.A.; Elkomy, M.H.; Naguib, I.A.; Ahmed, M.F.; Alsaidan, O.A.; Alsalahat, I.; Ghoneim, M.M.; Eid, H.M. Lipid Nanocarriers Overlaid with Chitosan for Brain Delivery of Berberine via the Nasal Route. Pharmaceuticals (Basel) 2022, 15. [Google Scholar] [CrossRef]
- Kwon, M.; Lim, D.Y.; Lee, C.H.; Jeon, J.H.; Choi, M.K.; Song, I.S. Enhanced Intestinal Absorption and Pharmacokinetic Modulation of Berberine and Its Metabolites through the Inhibition of P-Glycoprotein and Intestinal Metabolism in Rats Using a Berberine Mixed Micelle Formulation. Pharmaceutics 2020, 12. [Google Scholar] [CrossRef]
- El-Nahas, A.E.; Elbedaiwy, H.M.; Masoud, I.M.; Aly, R.G.; Helmy, M.W.; El-Kamel, A.H. Berberine-loaded zein/hyaluronic acid composite nanoparticles for efficient brain uptake to alleviate neuro-degeneration in the pilocarpine model of epilepsy. Eur J Pharm Biopharm 2023, 188, 182–200. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Sang, W.; Linghu, K.G.; Zhong, Z.F.; Cheang, W.S.; Li, J.; Hu, Y.J.; Yu, H.; Wang, Y.T. Dual-functional Brij-S20-modified nanocrystal formulation enhances the intestinal transport and oral bioavailability of berberine. Int J Nanomedicine 2018, 13, 3781–3793. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.C.; Yang, M.Y.; Hsieh, W.Y.; Tsay, G.J.; Yang, Y.C.; Huang, Y.F.; Liu, S.Y.; Lai, C.M.; Lee, C.H.; Tang, C.M.; et al. Berberine's Impact on Apoptosis, Proliferation, Uptake Efficiency, and Nanoparticle-Based Therapy in DBTRG Cells. ACS Nanosci Au 2025, 5, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, M.A.; Elnaggar, Y.S.R.; Hamdy, D.A.; Abdallah, O.Y. Novel cremochylomicrons for improved oral bioavailability of the antineoplastic phytomedicine berberine chloride: Optimization and pharmacokinetics. Int J Pharm 2018, 535, 316–324. [Google Scholar] [CrossRef]
- Bian, X.; Guo, Q.; Yau, L.F.; Yang, L.; Wang, X.; Zhao, S.; Wu, S.; Qin, X.; Jiang, Z.H.; Li, C. Berberine-inspired ionizable lipid for self-structure stabilization and brain targeting delivery of nucleic acid therapeutics. Nat Commun 2025, 16, 2368. [Google Scholar] [CrossRef]
- Saleh, S.R.; Abd-Elmegied, A.; Aly Madhy, S.; Khattab, S.N.; Sheta, E.; Elnozahy, F.Y.; Mehanna, R.A.; Ghareeb, D.A.; Abd-Elmonem, N.M. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer's disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis. Int J Pharm 2024, 658, 124218. [Google Scholar] [CrossRef]
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef]
- Moss, D.E. Improving Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer's Disease: Are Irreversible Inhibitors the Future? Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef]
- Ebert, A.; Goss, K.U. Blood-brain barrier permeability revisited: Predicting intrinsic passive BBB permeability using the Solubility-diffusion model. Eur J Pharm Sci 2025, 215, 107354. [Google Scholar] [CrossRef]
- Fong, C.W. Permeability of the Blood-Brain Barrier: Molecular Mechanism of Transport of Drugs and Physiologically Important Compounds. J Membr Biol 2015, 248, 651–669. [Google Scholar] [CrossRef]
- Vilar, S.; Sobarzo-Sanchez, E.; Santana, L.; Uriarte, E. Ligand and Structure-based Modeling of Passive Diffusion through the Blood-Brain Barrier. Curr Med Chem 2018, 25, 1073–1089. [Google Scholar] [CrossRef] [PubMed]
- Calapai, F.; Cardia, L.; Sorbara, E.E.; Navarra, M.; Gangemi, S.; Calapai, G.; Mannucci, C. Cannabinoids, Blood-Brain Barrier, and Brain Disposition. Pharmaceutics 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Basavarajappa, B.S.; Subbanna, S. Unveiling the Potential of Phytocannabinoids: Exploring Marijuana's Lesser-Known Constituents for Neurological Disorders. Biomolecules 2024, 14. [Google Scholar] [CrossRef]
- Chatterjee, S.; Deshpande, A.A.; Shen, H. Recent advances in the in vitro and in vivo methods to assess impact of P-glycoprotein and breast cancer resistance protein transporters in central nervous system drug disposition. Biopharm Drug Dispos 2023, 44, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.C.; Feng, B.; Hou, X.; West, M.A.; Trapa, P.E.; Sciabola, S.; Verhoest, P.; Liras, J.L.; Maurer, T.S.; Wager, T.T. Harnessing Preclinical Data as a Predictive Tool for Human Brain Tissue Targeting. ACS Chem Neurosci 2021, 12, 1007–1017. [Google Scholar] [CrossRef]
- Śmiarowska, M.; Białecka, M.; Machoy-Mokrzyńska, A. Cannabis and cannabinoids: pharmacology and therapeutic potential. Neurol Neurochir Pol 2022, 56, 4–13. [Google Scholar] [CrossRef]
- Friedman, D.; French, J.A.; Maccarrone, M. Safety, efficacy, and mechanisms of action of cannabinoids in neurological disorders. Lancet Neurol 2019, 18, 504–512. [Google Scholar] [CrossRef]
- Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2020, 16, 9–29. [Google Scholar] [CrossRef]
- Blebea, N.M.; Pricopie, A.I.; Vlad, R.A.; Hancu, G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Pagano, C.; Navarra, G.; Coppola, L.; Avilia, G.; Bifulco, M.; Laezza, C. Cannabinoids: Therapeutic Use in Clinical Practice. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Masteikova, R.; Lazauskas, R.; Bernatoniene, J. Cannabis sativa L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation. Antioxidants (Basel) 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, L.; Landucci, E.; Pieraccini, G.; Mazzantini, C.; Bergonzi, M.C.; Pellegrini-Giampietro, D.E.; Bilia, A.R. Development and Blood-Brain Barrier Penetration of Nanovesicles Loaded with Cannabidiol. Pharmaceuticals (Basel) 2025, 18. [Google Scholar] [CrossRef] [PubMed]
- Al-Khazaleh, A.K.; Zhou, X.; Bhuyan, D.J.; Münch, G.W.; Al-Dalabeeh, E.A.; Jaye, K.; Chang, D. The Neurotherapeutic Arsenal in Cannabis sativa: Insights into Anti-Neuroinflammatory and Neuroprotective Activity and Potential Entourage Effects. Molecules 2024, 29. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, L.; Liu, G.; Fan, W.; Li, B.; Liu, R.; Wang, Z.; Fan, Q.; Xiao, W.; Li, Y.; et al. Ginkgo diterpene lactones inhibit cerebral ischemia/reperfusion induced inflammatory response in astrocytes via TLR4/NF-κB pathway in rats. J Ethnopharmacol 2020, 249, 112365. [Google Scholar] [CrossRef]
- Yu, T.; Wei, Z.; Wang, J.; Song, C.; Huang, W.; Zhang, P.; Shi, J.; Zhang, R.; Jiang, M.; Wang, D.; et al. Ginkgo biloba Extract GBE50 ameliorates cerebrovascular dysfunction and cognitive impairment in a mouse model of Alzheimer's disease. Phytomedicine 2025, 141, 156646. [Google Scholar] [CrossRef]
- Upadhyay, G.; Fihurka, O.; Patel, P.; Sanchez-Ramos, J. Quantitation of Cannabidiol (CBD) in brain regions and plasma following intranasal administration of a CBD nanoformulation. J Cannabis Res 2025, 7, 63. [Google Scholar] [CrossRef]
- Dehnbostel, F.O.; Dixit, V.A.; Preissner, R.; Banerjee, P. Non-animal models for blood-brain barrier permeability evaluation of drug-like compounds. Sci Rep 2024, 14, 8908. [Google Scholar] [CrossRef]
- Mohan Kumar, D.; Talwar, P. Neurotherapeutics across blood-brain barrier: screening of BBB-permeable and CNS-active molecules for neurodegenerative disease. Front Pharmacol 2025, 16, 1616144. [Google Scholar] [CrossRef]
- Etukudo, E.M.; Usman, I.M.; Oviosun, A.; Ojiakor, V.O.; Makena, W.; Owembabazi, E.; Aja, P.M.; Mutume Nzanzu Vivalya, B.; Archibong, V.B.; Anyanwu, E. Exploring the Neuroprotective Potentials of Flavonoid Metabolites in Syzygium aromaticum: A Review with in-silico Insight to Therapeutic Potential. J Exp Pharmacol 2025, 17, 587–611. [Google Scholar] [CrossRef]
- Meng, F.; Xi, Y.; Huang, J.; Ayers, P.W. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Sci Data 2021, 8, 289. [Google Scholar] [CrossRef]
- Janicka, M.; Sztanke, M.; Sztanke, K. Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology. Molecules 2024, 29. [Google Scholar] [CrossRef]
- Kocsis, A.E.; Kucsápszky, N.; Santa-Maria, A.R.; Hunyadi, A.; Deli, M.A.; Walter, F.R. Much More than Nutrients: The Protective Effects of Nutraceuticals on the Blood-Brain Barrier in Diseases. Nutrients 2025, 17. [Google Scholar] [CrossRef] [PubMed]
- Isabel, U.-V.; Belén, A.d.l.R.M.; Elena, G.-B. A new frontier in neuropharmacology: Recent progress in natural products research for blood–brain barrier crossing. Current Research in Biotechnology 2024, 8, 100235. [Google Scholar] [CrossRef]
- Kato, R.; Zhang, L.; Kinatukara, N.; Huang, R.; Asthana, A.; Weber, C.; Xia, M.; Xu, X.; Shah, P. Investigating blood-brain barrier penetration and neurotoxicity of natural products for central nervous system drug development. Sci Rep 2025, 15, 7431. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Banerjee, A.; Roy, K. Breaking the Barriers: Machine-Learning-Based c-RASAR Approach for Accurate Blood-Brain Barrier Permeability Prediction. J Chem Inf Model 2024, 64, 4298–4309. [Google Scholar] [CrossRef]
- Spielvogel, C.P.; Schindler, N.; Schröder, C.; Stellnberger, S.L.; Wadsak, W.; Mitterhauser, M.; Papp, L.; Hacker, M.; Pichler, V.; Vraka, C. Enhancing Blood-Brain Barrier Penetration Prediction by Machine Learning-Based Integration of Novel and Existing, In Silico and Experimental Molecular Parameters from a Standardized Database. J Chem Inf Model 2025, 65, 2773–2784. [Google Scholar] [CrossRef]
- Liu, S.; Jin, X.; Ge, Y.; Dong, J.; Liu, X.; Pei, X.; Wang, P.; Wang, B.; Chang, Y.; Yu, X.A. Advances in brain-targeted delivery strategies and natural product-mediated enhancement of blood-brain barrier permeability. J Nanobiotechnology 2025, 23, 382. [Google Scholar] [CrossRef]
- Maher, R.; Moreno-Borrallo, A.; Jindal, D.; Mai, B.T.; Ruiz-Hernandez, E.; Harkin, A. Intranasal Polymeric and Lipid-Based Nanocarriers for CNS Drug Delivery. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Ilić, T.; Đoković, J.B.; Nikolić, I.; Mitrović, J.R.; Pantelić, I.; Savić, S.D.; Savić, M.M. Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Maeng, H.J. Pharmacokinetics and Pharmacodynamics of Intranasal Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Nose-to-Brain Delivery. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Zhang, H.; Wei, H.; Wang, T.; Du, S.; Li, P. Transnasal PLGA Nanoparticles with Terpene Permeation Enhancers: Membrane Remodeling and Tight Junction Modulation for Enhanced Brain Drug Delivery. Int J Mol Sci 2025, 26. [Google Scholar] [CrossRef] [PubMed]
- Reddy, T.S.; Zomer, R.; Mantri, N. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids. Phytother Res 2023, 37, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Pires, P.C.; Rodrigues, M.; Alves, G.; Santos, A.O. Strategies to Improve Drug Strength in Nasal Preparations for Brain Delivery of Low Aqueous Solubility Drugs. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Koo, J.; Lim, C.; Oh, K.T. Recent Advances in Intranasal Administration for Brain-Targeting Delivery: A Comprehensive Review of Lipid-Based Nanoparticles and Stimuli-Responsive Gel Formulations. Int J Nanomedicine 2024, 19, 1767–1807. [Google Scholar] [CrossRef] [PubMed]
- Akpinar Adscheid, S.; Rojas-Rodríguez, M.; Abdel-Hafez, S.M.; Pavone, F.S.; Schneider, M.; Türeli, A.E.; Calamai, M.; Günday-Türeli, N. Scalable Manufacturing Method for Model Protein-Loaded PLGA Nanoparticles: Biocompatibility, Trafficking and Release Properties. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Lababidi, J.M.; Azzazy, H.M.E. Revamping Parkinson's disease therapy using PLGA-based drug delivery systems. NPJ Parkinsons Dis 2025, 11, 248. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, H.; Luo, Y.; Chen, Y.; Wang, M.; Wu, C.; Hu, P. Recent Applications of PLGA in Drug Delivery Systems. Polymers (Basel) 2024, 16. [Google Scholar] [CrossRef]
- Sheffey, V.V.; Siew, E.B.; Tanner, E.E.L.; Eniola-Adefeso, O. PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery. Adv Healthc Mater 2022, 11, e2101536. [Google Scholar] [CrossRef]
- Kesharwani, P.; Kumar, V.; Goh, K.W.; Gupta, G.; Alsayari, A.; Wahab, S.; Sahebkar, A. PEGylated PLGA nanoparticles: unlocking advanced strategies for cancer therapy. Mol Cancer 2025, 24, 205. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Ettcheto, M.; Egea, M.A.; Espina, M.; Cano, A.; Calpena, A.C.; Camins, A.; Carmona, N.; Silva, A.M.; Souto, E.B.; et al. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer's disease: in vitro and in vivo characterization. J Nanobiotechnology 2018, 16, 32. [Google Scholar] [CrossRef]
- De Soricellis, C.; Amante, C.; Russo, P.; Aquino, R.P.; Del Gaudio, P. Prilling as an Effective Tool for Manufacturing Submicrometric and Nanometric PLGA Particles for Controlled Drug Delivery to Wounds: Stability and Curcumin Release. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-Ceballos, G.P.; Ruozi, B.; Ottonelli, I.; Da Ros, F.; Vandelli, M.A.; Forni, F.; Daini, E.; Vilella, A.; Zoli, M.; Tosi, G.; et al. PLGA-PEG-ANG-2 Nanoparticles for Blood-Brain Barrier Crossing: Proof-of-Concept Study. Pharmaceutics 2020, 12. [Google Scholar] [CrossRef]
- Zhang, W.; Refaat, A.; Li, H.; Zhu, D.; Tong, Z.; Nicolazzo, J.A.; Peng, B.; Bai, H.; Esser, L.; Voelcker, N.H. Optimizing Angiopep-2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments. Advanced Functional Materials 2025, 2425165. [CrossRef]
- Chen, Z.A.; Wu, C.H.; Wu, S.H.; Huang, C.Y.; Mou, C.Y.; Wei, K.C.; Yen, Y.; Chien, I.T.; Runa, S.; Chen, Y.P.; et al. Receptor Ligand-Free Mesoporous Silica Nanoparticles: A Streamlined Strategy for Targeted Drug Delivery across the Blood-Brain Barrier. ACS Nano 2024, 18, 12716–12736. [Google Scholar] [CrossRef]
- Ojeda-Hernández, D.D.; Canales-Aguirre, A.A.; Matias-Guiu, J.; Gomez-Pinedo, U.; Mateos-Díaz, J.C. Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System. Front Bioeng Biotechnol 2020, 8, 389. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease. Int J Nanomedicine 2018, 13, 705–718. [Google Scholar] [CrossRef]
- O'Donnell, A.; Moollan, A.; Baneham, S.; Ozgul, M.; Pabari, R.M.; Cox, D.; Kirby, B.P.; Ramtoola, Z. Intranasal and intravenous administration of octa-arginine modified poly(lactic-co-glycolic acid) nanoparticles facilitates central nervous system delivery of loperamide. J Pharm Pharmacol 2015, 67, 525–536. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kang, S.J.; Park, H.S.; Lee, D.H.; Kim, J.H.; Kim, J.E.; Kim, D.I.; Chung, C.H.; Yoon, J.K.; Bhang, S.H. Drug delivery strategies with lipid-based nanoparticles for Alzheimer's disease treatment. J Nanobiotechnology 2025, 23, 99. [Google Scholar] [CrossRef]
- Aslam, M.; Javed, M.N.; Deeb, H.H.; Nicola, M.K.; Mirza, M.A.; Alam, M.S.; Akhtar, M.H.; Waziri, A. Lipid Nanocarriers for Neurotherapeutics: Introduction, Challenges, Blood-brain Barrier, and Promises of Delivery Approaches. CNS Neurol Disord Drug Targets 2022, 21, 952–965. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Z.; R.S., M; Owens, T.; M.H.K., R; Wu, C. PEGylated liposomes via ATRP for brain drug delivery. J Liposome Res 2025, 35, 283–289. [Google Scholar] [CrossRef]
- Du, Q.; Liu, Y.; Fan, M.; Wei, S.; Ismail, M.; Zheng, M. PEG length effect of peptide-functional liposome for blood brain barrier (BBB) penetration and brain targeting. J Control Release 2024, 372, 85–94. [Google Scholar] [CrossRef]
- Zuberi, A.; Rehman, U.; Gupta, G.; Ghazwani, M.; Hani, U.; Kesharwani, P. Smart liposomal systems for brain cancer: Technological innovations in drug delivery. Colloids Surf B Biointerfaces 2025, 255, 114904. [Google Scholar] [CrossRef]
- Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017, 264, 306–332. [Google Scholar] [CrossRef] [PubMed]
- Mehrdadi, S. Drug Delivery of Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) to Target Brain Tumors. Adv Pharm Bull 2023, 13, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.P.; Moreira, J.N.; Sousa Lobo, J.M.; Silva, A.C. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B 2021, 11, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Cui, L.; Lu, H.; Liu, Z.; Zhai, Z.; Wang, H.; Shao, L.; Lu, Z.; Song, X.; Zhang, Y. Nose to Brain: Exploring the Progress of Intranasal Delivery of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers. Int J Nanomedicine 2024, 19, 12343–12368. [Google Scholar] [CrossRef]
- Bonferoni, M.C.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for "Nose-to-Brain" Drug Delivery. Pharmaceutics 2019, 11. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Duong, V.A. Advancements in Nanocarrier Systems for Nose-to-Brain Drug Delivery. Pharmaceuticals (Basel) 2025, 18. [Google Scholar] [CrossRef]
- Bahadur, S.; Pardhi, D.M.; Rautio, J.; Rosenholm, J.M.; Pathak, K. Intranasal Nanoemulsions for Direct Nose-to-Brain Delivery of Actives for CNS Disorders. Pharmaceutics 2020, 12. [Google Scholar] [CrossRef]
- Chatterjee, B.; Gorain, B.; Mohananaidu, K.; Sengupta, P.; Mandal, U.K.; Choudhury, H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 2019, 565, 258–268. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, C.; Pang, Z. Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules 2019, 9. [Google Scholar] [CrossRef]
- Li, H.; Zha, S.; Li, H.; Liu, H.; Wong, K.L.; All, A.H. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. Small 2022, 18, e2203629. [Google Scholar] [CrossRef]
- Janaszewska, A.; Lazniewska, J.; Trzepiński, P.; Marcinkowska, M.; Klajnert-Maculewicz, B. Cytotoxicity of Dendrimers. Biomolecules 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, P.; Roullin, V.G.; Chain, J.L. Crossing the blood-brain barrier: advances in dendrimer-based nanocarriers for central nervous system delivery. Nanoscale 2025, 17, 23202–23227. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, D.; Yapa, P.; Dabare, S.; Munaweera, I. Precision targeting of the CNS: recent progress in brain-directed nanodrug delivery. RSC Adv 2025, 15, 25910–25928. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, S.; Martín-Serrano, Á.; Okła, E.; Kędzierska, M.; Garcia-Gallego, S.; López, P.O.; de la Mata, F.J.; Michlewska, S.; Makowski, T.; Ionov, M.; et al. Synthesis and biophysical evaluation of carbosilane dendrimers as therapeutic siRNA carriers. Sci Rep 2024, 14, 1615. [Google Scholar] [CrossRef]
- Santos, S.D.; Xavier, M.; Leite, D.M.; Moreira, D.A.; Custódio, B.; Torrado, M.; Castro, R.; Leiro, V.; Rodrigues, J.; Tomás, H.; et al. PAMAM dendrimers: blood-brain barrier transport and neuronal uptake after focal brain ischemia. J Control Release 2018, 291, 65–79. [Google Scholar] [CrossRef]
- Yan, X.; Chen, Q. Polyamidoamine Dendrimers: Brain-Targeted Drug Delivery Systems in Glioma Therapy. Polymers (Basel) 2024, 16. [Google Scholar] [CrossRef]
- Jiang, T.; Qiao, Y.; Ruan, W.; Zhang, D.; Yang, Q.; Wang, G.; Chen, Q.; Zhu, F.; Yin, J.; Zou, Y.; et al. Cation-Free siRNA Micelles as Effective Drug Delivery Platform and Potent RNAi Nanomedicines for Glioblastoma Therapy. Adv Mater 2021, 33, e2104779. [Google Scholar] [CrossRef]
- Bhagat, N.; Nalawala, Z.; Patel, J.; Das, D.; Baldha, R.; Sarolia, J.; Rathod, S. Self-Assembled systems for Nose-to-Brain delivery of Temozolamide (TMZ) in brain tumor therapy. Int J Pharm 2025, 675, 125540. [Google Scholar] [CrossRef]
- Kadekar, S.; Nawale, G.N.; Rangasami, V.K.; Le Joncour, V.; Laakkonen, P.; Hilborn, J.; Varghese, O.P.; Oommen, O.P. Redox responsive Pluronic micelle mediated delivery of functional siRNA: a modular nano-assembly for targeted delivery. Biomater Sci 2021, 9, 3939–3944. [Google Scholar] [CrossRef]
- Wei, H.X.; Liu, M.H.; Wang, T.Y.; Shih, M.H.; Yu, J.; Yeh, Y.C. Fabrication of pH- and Ultrasound-Responsive Polymeric Micelles: The Effect of Amphiphilic Block Copolymers with Different Hydrophilic/Hydrophobic Block Ratios for Self-Assembly and Controlled Drug Release. Biomacromolecules 2025, 26, 2116–2130. [Google Scholar] [CrossRef] [PubMed]
- Convertine, A.J.; Diab, C.; Prieve, M.; Paschal, A.; Hoffman, A.S.; Johnson, P.H.; Stayton, P.S. pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules 2010, 11, 2904–2911. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, J.; Li, G.; Ni, B.; Liang, Z.; Chen, H.; Xu, C.; Zhou, J.; Huang, J.; Deng, S. Cation-free siRNA-cored nanocapsules for tumor-targeted RNAi therapy. Acta Biomater 2023, 161, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Pechnikova, N.A.; Domvri, K.; Porpodis, K.; Istomina, M.S.; Iaremenko, A.V.; Yaremenko, A.V. Carbon quantum dots in biomedical applications: advances, challenges, and future prospects. Aggregate 2025, 6, e707. [Google Scholar] [CrossRef]
- Perini, G.; Palmieri, V.; Ciasca, G.; De Spirito, M.; Papi, M. Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience. Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef]
- Qiao, R.; Fu, C.; Forgham, H.; Javed, I.; Huang, X.; Zhu, J.; Whittaker, A.K.; Davis, T.P. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv Drug Deliv Rev 2023, 197, 114822. [Google Scholar] [CrossRef]
- Truskewycz, A.; Yin, H.; Halberg, N.; Lai, D.T.H.; Ball, A.S.; Truong, V.K.; Rybicka, A.M.; Cole, I. Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. Small 2022, 18, e2106342. [Google Scholar] [CrossRef]
- Molaei, M.J. Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv 2019, 9, 6460–6481. [Google Scholar] [CrossRef]
- Das, S.; Mondal, S.; Ghosh, D. Carbon quantum dots in bioimaging and biomedicines. Front Bioeng Biotechnol 2023, 11, 1333752. [Google Scholar] [CrossRef]
- Araújo, C.; Rodrigues, R.O.; Bañobre-López, M.; Silva, A.M.T.; Ribeiro, R.S. Carbon Dots as a Fluorescent Nanosystem for Crossing the Blood-Brain Barrier with Plausible Application in Neurological Diseases. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Chaparro, C.I.P.; Simões, B.T.; Borges, J.P.; Castanho, M.; Soares, P.I.P.; Neves, V. A Promising Approach: Magnetic Nanosystems for Alzheimer's Disease Theranostics. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Mohebichamkhorami, F.; Faizi, M.; Mahmoudifard, M.; Hajikarim-Hamedani, A.; Mohseni, S.S.; Heidari, A.; Ghane, Y.; Khoramjouy, M.; Khayati, M.; Ghasemi, R.; et al. Microfluidic Synthesis of Ultrasmall Chitosan/Graphene Quantum Dots Particles for Intranasal Delivery in Alzheimer's Disease Treatment. Small 2023, 19, e2207626. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.; Basu, S.M.; Qasim, M.; Giri, J. Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics. Nanoscale 2023, 15, 7384–7402. [Google Scholar] [CrossRef] [PubMed]
- Raja, I.S.; Song, S.J.; Kang, M.S.; Lee, Y.B.; Kim, B.; Hong, S.W.; Jeong, S.J.; Lee, J.C.; Han, D.W. Toxicity of Zero- and One-Dimensional Carbon Nanomaterials. Nanomaterials (Basel) 2019, 9. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, C.; Arya, S.K.; Puri, S.; Khatri, M. Neurological effects of carbon quantum dots on zebrafish: A review. Neuroscience 2024, 560, 334–346. [Google Scholar] [CrossRef]
- Jacobsen, N.R.; Møller, P.; Clausen, P.A.; Saber, A.T.; Micheletti, C.; Jensen, K.A.; Wallin, H.; Vogel, U. Biodistribution of Carbon Nanotubes in Animal Models. Basic Clin Pharmacol Toxicol 2017, 121 Suppl 3, 30–43. [Google Scholar] [CrossRef]
- Galassi, T.V.; Antman-Passig, M.; Yaari, Z.; Jessurun, J.; Schwartz, R.E.; Heller, D.A. Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS One 2020, 15, e0226791. [Google Scholar] [CrossRef]
- Clementino, A.R.; Pellegrini, G.; Banella, S.; Colombo, G.; Cantù, L.; Sonvico, F.; Del Favero, E. Structure and Fate of Nanoparticles Designed for the Nasal Delivery of Poorly Soluble Drugs. Mol Pharm 2021, 18, 3132–3146. [Google Scholar] [CrossRef]
- Haro-Martínez, E.; Muscolino, E.; Moral, N.; Duran, J.; Fornaguera, C. Crossing the blood-brain barrier: nanoparticle-based strategies for neurodegenerative disease therapy. In Drug Deliv Transl Res; 2025. [Google Scholar] [CrossRef]
- Omar, S.H.; Osman, R.; Mamdouh, W.; Abdel-Bar, H.M.; Awad, G.A.S. Bioinspired lipid-polysaccharide modified hybrid nanoparticles as a brain-targeted highly loaded carrier for a hydrophilic drug. Int J Biol Macromol 2020, 165, 483–494. [Google Scholar] [CrossRef]
- Ishak, R.A.H.; Mostafa, N.M.; Kamel, A.O. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery - comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv 2017, 24, 1874–1890. [Google Scholar] [CrossRef]
- Yuan, T.; Gao, L.; Zhan, W.; Dini, D. Effect of Particle Size and Surface Charge on Nanoparticles Diffusion in the Brain White Matter. Pharm Res 2022, 39, 767–781. [Google Scholar] [CrossRef]
- Israel, L.L.; Galstyan, A.; Cox, A.; Shatalova, E.S.; Sun, T.; Rashid, M.H.; Grodzinski, Z.; Chiechi, A.; Fuchs, D.T.; Patil, R.; et al. Signature Effects of Vector-Guided Systemic Nano Bioconjugate Delivery Across Blood-Brain Barrier of Normal, Alzheimer's, and Tumor Mouse Models. ACS Nano 2022, 16, 11815–11832. [Google Scholar] [CrossRef]
- Sharma, S.; Lee, D.; Maity, S.; Singh, P.; Chadokiya, J.; Mohaghegh, N.; Hassani, A.; Kim, H.; Gangarade, A.; Ljubimova, J.Y.; et al. Antibody-Free Immunopeptide Nanoconjugates for Brain-Targeted Drug Delivery in Glioblastoma Multiforme. Bioconjug Chem 2025, 36, 2132–2144. [Google Scholar] [CrossRef]
- Kim, W.; Ly, N.K.; He, Y.; Li, Y.; Yuan, Z.; Yeo, Y. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv Drug Deliv Rev 2023, 192, 114635. [Google Scholar] [CrossRef] [PubMed]
- Kashapov, R.; Ibragimova, A.; Pavlov, R.; Gabdrakhmanov, D.; Kashapova, N.; Burilova, E.; Zakharova, L.; Sinyashin, O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Beach, M.A.; Nayanathara, U.; Gao, Y.; Zhang, C.; Xiong, Y.; Wang, Y.; Such, G.K. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024, 124, 5505–5616. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, W.; Wang, Z.; Lu, J. Lipid-Based Nanotechnology: Liposome. Pharmaceutics 2023, 16. [Google Scholar] [CrossRef]
- Roszkowski, S.; Durczynska, Z. Advantages and limitations of nanostructures for biomedical applications. Adv Clin Exp Med 2025, 34, 447–456. [Google Scholar] [CrossRef]
- Kesharwani, P.; Gothwal, A.; Iyer, A.K.; Jain, K.; Chourasia, M.K.; Gupta, U. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today 2018, 23, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Wakaskar, R.R. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Target 2018, 26, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Yanar, F.; Carugo, D.; Zhang, X. Hybrid Nanoplatforms Comprising Organic Nanocompartments Encapsulating Inorganic Nanoparticles for Enhanced Drug Delivery and Bioimaging Applications. Molecules 2023, 28. [Google Scholar] [CrossRef]
- Mehta, M.; Bui, T.A.; Yang, X.; Aksoy, Y.; Goldys, E.M.; Deng, W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater Au 2023, 3, 600–619. [Google Scholar] [CrossRef]
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front Mol Biosci 2020, 7, 587997. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 2020, 10, 26777–26791. [Google Scholar] [CrossRef]
- Ranjbar, S.; Emamjomeh, A.; Sharifi, F.; Zarepour, A.; Aghaabbasi, K.; Dehshahri, A.; Sepahvand, A.M.; Zarrabi, A.; Beyzaei, H.; Zahedi, M.M.; et al. Lipid-Based Delivery Systems for Flavonoids and Flavonolignans: Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Dhiman, N.; Awasthi, R.; Sharma, B.; Kharkwal, H.; Kulkarni, G.T. Lipid Nanoparticles as Carriers for Bioactive Delivery. Front Chem 2021, 9, 580118. [Google Scholar] [CrossRef]
- Hassan, A.A.A.; Ramadan, E.; Kristó, K.; Regdon, G., Jr.; Sovány, T. Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Sivadasan, D.; Sultan, M.H.; Madkhali, O.; Almoshari, Y.; Thangavel, N. Polymeric Lipid Hybrid Nanoparticles (PLNs) as Emerging Drug Delivery Platform-A Comprehensive Review of Their Properties, Preparation Methods, and Therapeutic Applications. Pharmaceutics 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Seyyedi-Mansour, S.; Carpena, M.; Barciela, P.; Perez-Vazquez, A.; Assadpour, E.; Prieto, M.A.; Jafari, S.M. Lipid-based nanocarriers loaded with bioactive compounds in active food packaging: Fabrication, characterization, and applications. Adv Colloid Interface Sci 2025, 340, 103457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Q.Y.; Haqqani, A.S.; Leclerc, S.; Liu, Z.; Fauteux, F.; Baumann, E.; Delaney, C.E.; Ly, D.; Star, A.T.; et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 2020, 17, 47. [Google Scholar] [CrossRef]
- Piantino, M.; Louis, F.; Shigemoto-Mogami, Y.; Kitamura, K.; Sato, K.; Yamaguchi, T.; Kawabata, K.; Yamamoto, S.; Iwasaki, S.; Hirabayashi, H.; et al. Brain microvascular endothelial cells derived from human induced pluripotent stem cells as in vitro model for assessing blood-brain barrier transferrin receptor-mediated transcytosis. Mater Today Bio 2022, 14, 100232. [Google Scholar] [CrossRef] [PubMed]
- Katt, M.E.; Waters, E.A.; Gastfriend, B.D.; Herrin, B.R.; Cooper, M.D.; Shusta, E.V. Identification of Variable Lymphocyte Receptors That Target the Human Blood-Brain Barrier. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Kuhn, P.; Petralla, S.; Dabbagh, F.; Pegoretti, V.; Muranyi, W.; Ishikawa, H.; Schroten, H.; Fischer, R.; Frenzel, A.; Schirrmann, T.; et al. A pH-sensitive binding modality allows successful transferrin receptor-mediated transcytosis of a bivalent antibody across brain barriers. MAbs 2025, 17, 2563758. [Google Scholar] [CrossRef]
- Pardridge, W.M.; Chou, T. Mathematical Models of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Transferrin Receptor and the Insulin Receptor. Pharmaceuticals (Basel) 2021, 14. [Google Scholar] [CrossRef]
- Shen, X.; Li, H.; Zhang, B.; Li, Y.; Zhu, Z. Targeting Transferrin Receptor 1 for Enhancing Drug Delivery Through the Blood-Brain Barrier for Alzheimer's Disease. Int J Mol Sci 2025, 26. [Google Scholar] [CrossRef]
- Morrison, J.I.; Petrovic, A.; Metzendorf, N.G.; Rofo, F.; Yilmaz, C.U.; Stenler, S.; Laudon, H.; Hultqvist, G. Standardized Preclinical In Vitro Blood-Brain Barrier Mouse Assay Validates Endocytosis-Dependent Antibody Transcytosis Using Transferrin-Receptor-Mediated Pathways. Mol Pharm 2023, 20, 1564–1576. [Google Scholar] [CrossRef]
- Khoury, N.; Pizzo, M.E.; Discenza, C.B.; Joy, D.; Tatarakis, D.; Todorov, M.I.; Negwer, M.; Ha, C.; De Melo, G.L.; Sarrafha, L.; et al. Fc-engineered large molecules targeting blood-brain barrier transferrin receptor and CD98hc have distinct central nervous system and peripheral biodistribution. Nat Commun 2025, 16, 1822. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-López, E.; Schuhmacher, A.J. Transportation of Single-Domain Antibodies through the Blood-Brain Barrier. Biomolecules 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Pompe, S.; Xenaki, K.T.; Di Maggio, A.; Moreno, C.B.; van Bergen En Henegouwen, P.M.P.; Mastrobattista, E.; Oliveira, S.; Caiazzo, M. Receptor-mediated transcytosis of nanobodies targeting the heparin-binding EGF-like growth factor in human blood-brain barrier models. J Control Release 2025, 383, 113852. [Google Scholar] [CrossRef] [PubMed]
- Szecskó, A.; Mészáros, M.; Simões, B.; Cavaco, M.; Chaparro, C.; Porkoláb, G.; Castanho, M.; Deli, M.A.; Neves, V.; Veszelka, S. PepH3-modified nanocarriers for delivery of therapeutics across the blood-brain barrier. Fluids Barriers CNS 2025, 22, 31. [Google Scholar] [CrossRef]
- Ghorai, S.M.; Deep, A.; Magoo, D.; Gupta, C.; Gupta, N. Cell-Penetrating and Targeted Peptides Delivery Systems as Potential Pharmaceutical Carriers for Enhanced Delivery across the Blood-Brain Barrier (BBB). Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Fu, L.; Bridges, C.A.; Kim, H.N.; Ding, C.; Bao Hou, N.C.; Yeow, J.; Fok, S.; Macmillan, A.; Sterling, J.D.; Baker, S.M.; et al. Cationic Polysaccharides Bind to the Endothelial Cell Surface Extracellular Matrix Involving Heparan Sulfate. Biomacromolecules 2024, 25, 3850–3862. [Google Scholar] [CrossRef]
- Reveret, L.; Leclerc, M.; Morin, F.; Émond, V.; Calon, F. Pharmacokinetics, biodistribution and toxicology of novel cell-penetrating peptides. Sci Rep 2023, 13, 11081. [Google Scholar] [CrossRef]
- Habault, J.; Poyet, J.L. Recent Advances in Cell Penetrating Peptide-Based Anticancer Therapies. Molecules 2019, 24. [Google Scholar] [CrossRef]
- Nam, S.H.; Park, J.; Koo, H. Recent advances in selective and targeted drug/gene delivery systems using cell-penetrating peptides. Arch Pharm Res 2023, 46, 18–34. [Google Scholar] [CrossRef]
- Polderdijk, S.G.I.; Limzerwala, J.F.; Spiess, C. Plasma membrane damage limits cytoplasmic delivery by conventional cell penetrating peptides. PLoS One 2024, 19, e0305848. [Google Scholar] [CrossRef]
- Ghaemi, B.; Tanwar, S.; Singh, A.; Arifin, D.R.; McMahon, M.T.; Barman, I.; Bulte, J.W.M. Cell-Penetrating and Enzyme-Responsive Peptides for Targeted Cancer Therapy: Role of Arginine Residue Length on Cell Penetration and In Vivo Systemic Toxicity. ACS Appl Mater Interfaces 2024, 16, 11159–11171. [Google Scholar] [CrossRef]
- Mendes, M.; Nunes, S.; Cova, T.; Branco, F.; Dyrks, M.; Koksch, B.; Vale, N.; Sousa, J.; Pais, A.; Vitorino, C. Charge-switchable cell-penetrating peptides for rerouting nanoparticles to glioblastoma treatment. Colloids Surf B Biointerfaces 2024, 241, 113983. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Zaro, J.L.; Shen, Y.; Chen, Q.; Yu, Y.; Sun, P.; Wang, Y.; Shen, W.C.; Tu, J.; Sun, C. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J Control Release 2018, 279, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Du, J.J.; Zhang, R.Y.; Jiang, S.; Xiao, S.; Liu, Y.; Niu, Y.; Zhao, W.X.; Wang, D.; Ma, X. Applications of cell penetrating peptide-based drug delivery system in immunotherapy. Front Immunol 2025, 16, 1540192. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Mi, G.; Shen, Y.; Webster, T.J. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale 2019, 11, 15057–15071. [Google Scholar] [CrossRef]
- Porro, G.; Basile, M.; Xie, Z.; Tuveri, G.M.; Battaglia, G.; Lopes, C.D.F. A new era in brain drug delivery: Integrating multivalency and computational optimisation for blood-brain barrier permeation. Adv Drug Deliv Rev 2025, 224, 115637. [Google Scholar] [CrossRef]
- Moreira, R.; Nóbrega, C.; de Almeida, L.P.; Mendonça, L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024, 22, 260. [Google Scholar] [CrossRef]
- Luo, F.; Zhong, T.; Chen, Y.; Guo, Q.; Tao, L.; Shen, X.; Fan, Y.; Wu, X. Dual-Ligand Synergistic Targeting Anti-Tumor Nanoplatforms with Cascade-Responsive Drug Release. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, S.; Yang, P.; Wang, P.; Lu, S.; Sheng, D.; Qian, K.; Cao, J.; Lu, W.; Zhang, Q. A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer's disease mice. J Control Release 2020, 320, 347–362. [Google Scholar] [CrossRef]
- Chen, C.; Duan, Z.; Yuan, Y.; Li, R.; Pang, L.; Liang, J.; Xu, X.; Wang, J. Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. ACS Appl Mater Interfaces 2017, 9, 5864–5873. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, M.; Chen, Z.; Han, X.; Yu, F.; Li, Z.; Xie, X.; Han, C.; Yu, L.; Yang, Y.; et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv 2017, 24, 1045–1055. [Google Scholar] [CrossRef]
- Ling, C.; Chen, L.; Liang, J.; Li, X.; Wei, H.; Yu, C.; Wang, J. Neutrophil/monocyte-targeted dual-ligands modified liposomes delivering puerarin for ischemia stroke treatment. Mater Today Bio 2025, 33, 102077. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, Q.; Chen, Z.; Liu, J.; Zhang, Z.; Tian, J.; Wang, X.; Yang, X.; Chen, Q.; Huang, X.; et al. Rational Design of Dual-Targeted Nanomedicines for Enhanced Vascular Permeability in Low-Permeability Tumors. ACS Nano 2025, 19, 3424–3438. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Yang, L.; Wang, R.; Song, G.; Fu, J.; Wang, J.; Gao, N.; Wang, H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024, 16. [Google Scholar] [CrossRef] [PubMed]
- Toader, C.; Dumitru, A.V.; Eva, L.; Serban, M.; Covache-Busuioc, R.A.; Ciurea, A.V. Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Lv, Z.; Yang, Q.; Chang, R.; Wu, J. Research Progress on Stimulus-Responsive Polymer Nanocarriers for Cancer Treatment. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Deirram, N.; Zhang, C.; Kermaniyan, S.S.; Johnston, A.P.R.; Such, G.K. pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol Rapid Commun 2019, 40, e1800917. [Google Scholar] [CrossRef]
- Meng, X.; Shen, Y.; Zhao, H.; Lu, X.; Wang, Z.; Zhao, Y. Redox-manipulating nanocarriers for anticancer drug delivery: a systematic review. J Nanobiotechnology 2024, 22, 587. [Google Scholar] [CrossRef]
- Hersh, A.M.; Bhimreddy, M.; Weber-Levine, C.; Jiang, K.; Alomari, S.; Theodore, N.; Manbachi, A.; Tyler, B.M. Applications of Focused Ultrasound for the Treatment of Glioblastoma: A New Frontier. Cancers (Basel) 2022, 14. [Google Scholar] [CrossRef]
- He, C.; Wu, Z.; Zhuang, M.; Li, X.; Xue, S.; Xu, S.; Xu, J.; Wu, Z.; Lu, M. Focused ultrasound-mediated blood-brain barrier opening combined with magnetic targeting cytomembrane based biomimetic microbubbles for glioblastoma therapy. J Nanobiotechnology 2023, 21, 297. [Google Scholar] [CrossRef]
- Teleanu, R.I.; Preda, M.D.; Niculescu, A.G.; Vladâcenco, O.; Radu, C.I.; Grumezescu, A.M.; Teleanu, D.M. Current Strategies to Enhance Delivery of Drugs across the Blood-Brain Barrier. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Sonabend, A.M.; Gould, A.; Amidei, C.; Ward, R.; Schmidt, K.A.; Zhang, D.Y.; Gomez, C.; Bebawy, J.F.; Liu, B.P.; Bouchoux, G.; et al. Repeated blood-brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: a phase 1 trial. Lancet Oncol 2023, 24, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted drug delivery strategies for precision medicines. Nat Rev Mater 2021, 6, 351–370. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, K.B.; Burkhart, A.; Thomsen, L.B.; Andresen, T.L.; Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019, 181, 101665. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.S.; Johnsen, K.B.; Kucharz, K.; Lauritzen, M.; Moos, T. Blood-Brain Barrier Transport of Transferrin Receptor-Targeted Nanoparticles. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Bien-Ly, N.; Yu, Y.J.; Bumbaca, D.; Elstrott, J.; Boswell, C.A.; Zhang, Y.; Luk, W.; Lu, Y.; Dennis, M.S.; Weimer, R.M.; et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med 2014, 211, 233–244. [Google Scholar] [CrossRef]
- Arguello, A.; Mahon, C.S.; Calvert, M.E.K.; Chan, D.; Dugas, J.C.; Pizzo, M.E.; Thomsen, E.R.; Chau, R.; Damo, L.A.; Duque, J.; et al. Molecular architecture determines brain delivery of a transferrin receptor-targeted lysosomal enzyme. J Exp Med 2022, 219. [Google Scholar] [CrossRef]
- Bonvicini, G.; Singh, S.; Sandersjöö, L.; Sehlin, D.; Syvänen, S.; Andersson, K.G. The effects of dose, valency, and affinity on TfR-mediated brain delivery in vivo. Fluids Barriers CNS 2025, 22, 36. [Google Scholar] [CrossRef]
- di Polidoro, A.C.; Cafarchio, A.; Vecchione, D.; Donato, P.; De Nola, F.; Torino, E. Revealing Angiopep-2/LRP1 Molecular Interaction for Optimal Delivery to Glioblastoma (GBM). Molecules 2022, 27. [Google Scholar] [CrossRef]
- Khan, N.U.; Ni, J.; Ju, X.; Miao, T.; Chen, H.; Han, L. Escape from abluminal LRP1-mediated clearance for boosted nanoparticle brain delivery and brain metastasis treatment. Acta Pharm Sin B 2021, 11, 1341–1354. [Google Scholar] [CrossRef]
- Kafa, H.; Wang, J.T.; Rubio, N.; Klippstein, R.; Costa, P.M.; Hassan, H.A.; Sosabowski, J.K.; Bansal, S.S.; Preston, J.E.; Abbott, N.J.; et al. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo. J Control Release 2016, 225, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Kato, N.; Yamada, S.; Suzuki, R.; Iida, Y.; Matsumoto, M.; Fumoto, S.; Arima, H.; Mukai, H.; Kawakami, S. Development of an apolipoprotein E mimetic peptide-lipid conjugate for efficient brain delivery of liposomes. Drug Deliv 2023, 30, 2173333. [Google Scholar] [CrossRef] [PubMed]
- Benitez Amaro, A.; Solanelles Curco, A.; Garcia, E.; Julve, J.; Rives, J.; Benitez, S.; Llorente Cortes, V. Apolipoprotein and LRP1-Based Peptides as New Therapeutic Tools in Atherosclerosis. J Clin Med 2021, 10. [Google Scholar] [CrossRef]
- Hjelm, L.C.; Lindberg, H.; Ståhl, S.; Löfblom, J. Affibody Molecules Intended for Receptor-Mediated Transcytosis via the Transferrin Receptor. Pharmaceuticals (Basel) 2023, 16. [Google Scholar] [CrossRef] [PubMed]
- Crowe, T.P.; Hsu, W.H. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci 2018, 195, 44–52. [Google Scholar] [CrossRef]
- Islam, S.U.; Shehzad, A.; Ahmed, M.B.; Lee, Y.S. Intranasal Delivery of Nanoformulations: A Potential Way of Treatment for Neurological Disorders. Molecules 2020, 25. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Huang, Y.; Ma, Y.; Song, Q.; Chen, H.; Jiang, G.; Gao, X. Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway. Adv Drug Deliv Rev 2024, 207, 115196. [Google Scholar] [CrossRef]
- Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Gupta, U.; Kesharwani, P.; Ravichandiran, V.; Kumar, P.; Naidu, V.G.M.; et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release 2020, 327, 235–265. [Google Scholar] [CrossRef]
- Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Caramella, C.M.; Ferrari, F. Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics 2020, 12. [Google Scholar] [CrossRef]
- Xu, K.; Duan, S.; Wang, W.; Ouyang, Q.; Qin, F.; Guo, P.; Hou, J.; He, Z.; Wei, W.; Qin, M. Nose-to-brain delivery of nanotherapeutics: Transport mechanisms and applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2024, 16, e1956. [Google Scholar] [CrossRef] [PubMed]
- Lofts, A.; Abu-Hijleh, F.; Rigg, N.; Mishra, R.K.; Hoare, T. Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022, 36, 739–770. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, Y.; Zhang, W.; Xia, X.; Li, H.; Qin, M.; Gao, H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J Control Release 2024, 366, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Gorick, C.M.; Breza, V.R.; Nowak, K.M.; Cheng, V.W.T.; Fisher, D.G.; Debski, A.C.; Hoch, M.R.; Demir, Z.E.F.; Tran, N.M.; Schwartz, M.R.; et al. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Deliv Rev 2022, 191, 114583. [Google Scholar] [CrossRef]
- Chen, K.T.; Wei, K.C.; Liu, H.L. Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Front Pharmacol 2019, 10, 86. [Google Scholar] [CrossRef]
- Zhu, H.; Allwin, C.; Bassous, M.G.; Pouliopoulos, A.N. Focused ultrasound-mediated enhancement of blood-brain barrier permeability for brain tumor treatment: a systematic review of clinical trials. J Neurooncol 2024, 170, 235–252. [Google Scholar] [CrossRef]
- Gosselet, F.; Loiola, R.A.; Roig, A.; Rosell, A.; Culot, M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int 2021, 144, 104952. [Google Scholar] [CrossRef]
- Sun, T.; Samiotaki, G.; Wang, S.; Acosta, C.; Chen, C.C.; Konofagou, E.E. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening. Phys Med Biol 2015, 60, 9079–9094. [Google Scholar] [CrossRef]
- Xie, Y.; Hu, J.; Lei, W.; Qian, S. Prediction of vascular injury by cavitation microbubbles in a focused ultrasound field. Ultrason Sonochem 2022, 88, 106103. [Google Scholar] [CrossRef]
- Meng, Y.; Kalia, L.V.; Kalia, S.K.; Hamani, C.; Huang, Y.; Hynynen, K.; Lipsman, N.; Davidson, B. Current Progress in Magnetic Resonance-Guided Focused Ultrasound to Facilitate Drug Delivery across the Blood-Brain Barrier. Pharmaceutics 2024, 16. [Google Scholar] [CrossRef]
- Timbie, K.F.; Mead, B.P.; Price, R.J. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J Control Release 2015, 219, 61–75. [Google Scholar] [CrossRef]
- Burgess, A.; Shah, K.; Hough, O.; Hynynen, K. Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother 2015, 15, 477–491. [Google Scholar] [CrossRef]
- Wu, S.Y.; Aurup, C.; Sanchez, C.S.; Grondin, J.; Zheng, W.; Kamimura, H.; Ferrera, V.P.; Konofagou, E.E. Efficient Blood-Brain Barrier Opening in Primates with Neuronavigation-Guided Ultrasound and Real-Time Acoustic Mapping. Sci Rep 2018, 8, 7978. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, Y.; Power, C.; Alexander, P.M.; Sutton, J.T.; Aryal, M.; Vykhodtseva, N.; Miller, E.L.; McDannold, N.J. Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model. Proc Natl Acad Sci U S A 2017, 114, E10281–e10290. [Google Scholar] [CrossRef] [PubMed]
- Novell, A.; Kamimura, H.A.S.; Cafarelli, A.; Gerstenmayer, M.; Flament, J.; Valette, J.; Agou, P.; Conti, A.; Selingue, E.; Aron Badin, R.; et al. A new safety index based on intrapulse monitoring of ultra-harmonic cavitation during ultrasound-induced blood-brain barrier opening procedures. Sci Rep 2020, 10, 10088. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Liu, K.; Pouliopoulos, A.N.; Ji, R.; Jiménez-Gambín, S.; Yousefian, O.; Kline-Schoder, A.R.; Batts, A.J.; Tsitsos, F.N.; Kokossis, D.; et al. Transcranial blood-brain barrier opening in Alzheimer's disease patients using a portable focused ultrasound system with real-time 2-D cavitation mapping. Theranostics 2024, 14, 4519–4535. [Google Scholar] [CrossRef]
- Todd, N.; Angolano, C.; Ferran, C.; Devor, A.; Borsook, D.; McDannold, N. Secondary effects on brain physiology caused by focused ultrasound-mediated disruption of the blood-brain barrier. J Control Release 2020, 324, 450–459. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Pan, M.; Fiaz, M.; Hao, Y.; Yan, Y.; Sun, L.; Yan, F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv Drug Deliv Rev 2022, 190, 114539. [Google Scholar] [CrossRef]
- Shin, J.; Kong, C.; Cho, J.S.; Lee, J.; Koh, C.S.; Yoon, M.S.; Na, Y.C.; Chang, W.S.; Chang, J.W. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters. Neurosurg Focus 2018, 44, E15. [Google Scholar] [CrossRef]
- Cheng, M.; Li, F.; Han, T.; Yu, A.C.H.; Qin, P. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions. Ultrason Sonochem 2019, 52, 512–521. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, L.; Cheng, M.; Jin, L.; Du, L.; Han, T.; Xu, L.; Yu, A.C.H.; Qin, P. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound. Ultrason Sonochem 2017, 35, 176–184. [Google Scholar] [CrossRef]
- Zhao, X.; Wright, A.; Goertz, D.E. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions. Ultrason Sonochem 2023, 93, 106291. [Google Scholar] [CrossRef]
- Patel, A.; Schoen, S.J., Jr.; Arvanitis, C.D. Closed Loop Spatial and Temporal Control of Cavitation Activity with Passive Acoustic Mapping. IEEE Trans Biomed Eng 2018. [Google Scholar] [CrossRef] [PubMed]
- Downs, M.E.; Buch, A.; Sierra, C.; Karakatsani, M.E.; Teichert, T.; Chen, S.; Konofagou, E.E.; Ferrera, V.P. Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task. PLoS One 2015, 10, e0125911. [Google Scholar] [CrossRef]
- Mainprize, T.; Lipsman, N.; Huang, Y.; Meng, Y.; Bethune, A.; Ironside, S.; Heyn, C.; Alkins, R.; Trudeau, M.; Sahgal, A.; et al. Blood-Brain Barrier Opening in Primary Brain Tumors with Non-invasive MR-Guided Focused Ultrasound: A Clinical Safety and Feasibility Study. Sci Rep 2019, 9, 321. [Google Scholar] [CrossRef]
- Rezai, A.R.; Ranjan, M.; Haut, M.W.; Carpenter, J.; D'Haese, P.F.; Mehta, R.I.; Najib, U.; Wang, P.; Claassen, D.O.; Chazen, J.L.; et al. Focused ultrasound-mediated blood-brain barrier opening in Alzheimer's disease: long-term safety, imaging, and cognitive outcomes. J Neurosurg 2023, 139, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadis, P.; Gandhi, D.; Guo, Y.; Ahmed, A.K.; Bentzen, S.M.; Arvanitis, C.; Woodworth, G.F. Localized blood-brain barrier opening in infiltrating gliomas with MRI-guided acoustic emissions-controlled focused ultrasound. Proc Natl Acad Sci U S A 2021, 118. [Google Scholar] [CrossRef]
- Pinkiewicz, M.; Zaczyński, A.; Walecki, J.; Zawadzki, M. Beyond the Walls of Troy: A Scoping Review on Pharmacological Strategies to Enhance Drug Delivery Across the Blood-Brain Barrier and Blood-Tumor Barrier. Int J Mol Sci 2025, 26. [Google Scholar] [CrossRef]
- Priest, R.; Ambady, P.; Neweult, E. ACTR-23. safety of intra-arterial chemotherapy with osmotic opening of the blood-brain barrier. Neuro-Oncology 2018, 20, vi16. [Google Scholar] [CrossRef]
- Ferreira, C.; Ferreira, M.Y.; Cardoso, L.J.C.; Scarramal, J.P.L.; Nogueira, A.; Wong, T.; Bokil, S.; Singh, F.; Massimo, S.; Albers, O.; et al. Safety and efficacy of selective and superselective intra-arterial cerebral infusion with blood-brain barrier disruption for glioma: a systematic review and meta-analysis. J Neurointerv Surg 2025. [Google Scholar] [CrossRef]
- Lei, K.; Zhou, L.; Dan, M.; Yang, F.; Jian, T.; Xin, J.; Yu, Z.; Wang, Y. Trojan Horse Delivery Strategies of Natural Medicine Monomers: Challenges and Limitations in Improving Brain Targeting. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef] [PubMed]
- D'Amico, R.S.; Aghi, M.K.; Vogelbaum, M.A.; Bruce, J.N. Convection-enhanced drug delivery for glioblastoma: a review. J Neurooncol 2021, 151, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, A.; Chin, A.T.; Flanigan, P.M.; Chen, R.; Bankiewicz, K.; Aghi, M.K. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg 2017, 126, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.M.; Sonabend, A.M.; Bruce, J.N. Convection-Enhanced Delivery. Neurotherapeutics 2017, 14, 358–371. [Google Scholar] [CrossRef]
- Huttunen, K.M. Improving drug delivery to the brain: the prodrug approach. Expert Opin Drug Deliv 2024, 21, 683–693. [Google Scholar] [CrossRef]
- Puris, E.; Fricker, G.; Gynther, M. Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022, 39, 1415–1455. [Google Scholar] [CrossRef]
- Papakyriakopoulou, P.; Valsami, G. The nasal route for nose-to-brain drug delivery: advanced nasal formulations for CNS disorders. Expert Opin Drug Deliv 2025, 22, 823–839. [Google Scholar] [CrossRef]
- Chu, C.; Jablonska, A.; Gao, Y.; Lan, X.; Lesniak, W.G.; Liang, Y.; Liu, G.; Li, S.; Magnus, T.; Pearl, M.; et al. Hyperosmolar blood-brain barrier opening using intra-arterial injection of hyperosmotic mannitol in mice under real-time MRI guidance. Nat Protoc 2022, 17, 76–94. [Google Scholar] [CrossRef]
- Virtanen, P.S.; Ortiz, K.J.; Patel, A.; Blocher, W.A., 3rd; Richardson, A.M. Blood-Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade. Curr Oncol Rep 2024, 26, 236–249. [Google Scholar] [CrossRef]
- Chen, T.; Wang, W.; Ramos, N.M.; Schonthal, A. EXTH-66. NEO100 TRANSIENTLY OPENS UP THE BLOOD BRAIN BARRIER VIA TIGHT JUNCTION INHIBITION. Neuro-Oncology 2020, 22, ii101. [Google Scholar] [CrossRef]
- Trevisani, M.; Berselli, A.; Alberini, G.; Centonze, E.; Vercellino, S.; Cartocci, V.; Millo, E.; Ciobanu, D.Z.; Braccia, C.; Armirotti, A.; et al. A claudin5-binding peptide enhances the permeability of the blood-brain barrier in vitro. Sci Adv 2025, 11, eadq2616. [Google Scholar] [CrossRef]
- Parvar, S.J.; Wong, C.I.; Lewis, A.; Szychot, E.; Morris, C.J.; Shorthouse, D.; Dziemidowicz, K. Convection-enhanced delivery for brain malignancies: Technical parameters, formulation strategies and clinical perspectives. Adv Drug Deliv Rev 2025, 224, 115657. [Google Scholar] [CrossRef]
- Lonser, R.R.; Sarntinoranont, M.; Morrison, P.F.; Oldfield, E.H. Convection-enhanced delivery to the central nervous system. J Neurosurg 2015, 122, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Puris, E.; Gynther, M.; Auriola, S.; Huttunen, K.M. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res 2020, 37, 88. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.C.; Colas, C.; Finke, K.; Springer, S.; Stoner, L.; Zur, A.A.; Venteicher, B.; Campbell, J.; Hall, C.; Flint, A.; et al. Reevaluating the Substrate Specificity of the L-Type Amino Acid Transporter (LAT1). J Med Chem 2018, 61, 7358–7373. [Google Scholar] [CrossRef] [PubMed]
- Parvez, M.M.; Sadighi, A.; Ahn, Y.; Keller, S.F.; Enoru, J.O. Uptake Transporters at the Blood-Brain Barrier and Their Role in Brain Drug Disposition. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Bahrami, K.; Järvinen, J.; Laitinen, T.; Reinisalo, M.; Honkakoski, P.; Poso, A.; Huttunen, K.M.; Rautio, J. Structural Features Affecting the Interactions and Transportability of LAT1-Targeted Phenylalanine Drug Conjugates. Mol Pharm 2023, 20, 206–218. [Google Scholar] [CrossRef]
- Hugele, A.; Löffler, S.; Molina, B.H.; Guillon, M.; Montaser, A.B.; Auriola, S.; Huttunen, K.M. Aminopeptidase B can bioconvert L-type amino acid transporter 1 (LAT1)-utilizing amide prodrugs in the brain. Front Pharmacol 2022, 13, 1034964. [Google Scholar] [CrossRef]
- Huttunen, J.; Peltokangas, S.; Gynther, M.; Natunen, T.; Hiltunen, M.; Auriola, S.; Ruponen, M.; Vellonen, K.S.; Huttunen, K.M. L-Type Amino Acid Transporter 1 (LAT1/Lat1)-Utilizing Prodrugs Can Improve the Delivery of Drugs into Neurons, Astrocytes and Microglia. Sci Rep 2019, 9, 12860. [Google Scholar] [CrossRef]
- Montaser, A.B.; Järvinen, J.; Löffler, S.; Huttunen, J.; Auriola, S.; Lehtonen, M.; Jalkanen, A.; Huttunen, K.M. L-Type Amino Acid Transporter 1 Enables the Efficient Brain Delivery of Small-Sized Prodrug across the Blood-Brain Barrier and into Human and Mouse Brain Parenchymal Cells. ACS Chem Neurosci 2020, 11, 4301–4315. [Google Scholar] [CrossRef]
- Tampio, J.; Huttunen, J.; Montaser, A.; Huttunen, K.M. Targeting of Perforin Inhibitor into the Brain Parenchyma Via a Prodrug Approach Can Decrease Oxidative Stress and Neuroinflammation and Improve Cell Survival. Mol Neurobiol 2020, 57, 4563–4577. [Google Scholar] [CrossRef] [PubMed]
- Al Rihani, S.B.; Darakjian, L.I.; Deodhar, M.; Dow, P.; Turgeon, J.; Michaud, V. Disease-Induced Modulation of Drug Transporters at the Blood-Brain Barrier Level. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, J.; Gynther, M.; Vellonen, K.S.; Huttunen, K.M. L-Type amino acid transporter 1 (LAT1)-utilizing prodrugs are carrier-selective despite having low affinity for organic anion transporting polypeptides (OATPs). Int J Pharm 2019, 571, 118714. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, J.; Gynther, M.; Vellonen, K.-S.; Huttunen, K.M. L-Type amino acid transporter 1 (LAT1)-utilizing prodrugs are carrier-selective despite having low affinity for organic anion transporting polypeptides (OATPs). International Journal of Pharmaceutics 2019, 571, 118714. [Google Scholar] [CrossRef]
- van de Waterbeemd, H.; Smith, D.A.; Jones, B.C. Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des 2001, 15, 273–286. [Google Scholar] [CrossRef]
- Patel, M.M.; Patel, B.M. Crossing the Blood-Brain Barrier: Recent Advances in Drug Delivery to the Brain. CNS Drugs 2017, 31, 109–133. [Google Scholar] [CrossRef]
- Sethi, B.; Kumar, V.; Mahato, K.; Coulter, D.W.; Mahato, R.I. Recent advances in drug delivery and targeting to the brain. J Control Release 2022, 350, 668–687. [Google Scholar] [CrossRef]
- Juhairiyah, F.; de Lange, E.C.M. Understanding Drug Delivery to the Brain Using Liposome-Based Strategies: Studies that Provide Mechanistic Insights Are Essential. Aaps j 2021, 23, 114. [Google Scholar] [CrossRef]
- Gonzaga, R.V.; do Nascimento, L.A.; Santos, S.S.; Machado Sanches, B.A.; Giarolla, J.; Ferreira, E.I. Perspectives About Self-Immolative Drug Delivery Systems. J Pharm Sci 2020, 109, 3262–3281. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Cheng, G.; Yu, P.; Chang, J.; Chen, X. Cascade Drug-Release Strategy for Enhanced Anticancer Therapy. Matter 2021, 4, 26–53. [Google Scholar] [CrossRef]
- Muñoz-Sánchez, S.; Gong, J.; de la Mata, F.J.; Gillies, E.R.; García-Gallego, S. Functional Self-Immolative Hydrogels with Dendritic Cross-Linkers for Controlled Drug Delivery. Chem Mater 2025, 37, 5814–5824. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuyzen, A.E.; Hodson, L.E.; Pashikanti, G.; Fritzemeier, R.; Yeung, S.B.; Mancia, A.; Lian, D.R.; Tholath, P.J.; Paez, A.C.; Chavan, L.N.; et al. Rotamer-Controlled Self-Immolative Linkers Enable Tunable Release of Neurosteroid Oxime Prodrugs. ACS Med Chem Lett 2025, 16, 2022–2031. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, C.; Tian, F.; Xiao, Z.; Sun, Z.; Lu, L.; Dai, W.; Zhang, Q.; Mei, X. Improving the Dissolution Rate and Bioavailability of Curcumin via Co-Crystallization. Pharmaceuticals (Basel) 2024, 17. [Google Scholar] [CrossRef] [PubMed]
- Nicolaescu, O.E.; Belu, I.; Mocanu, A.G.; Manda, V.C.; Rău, G.; Pîrvu, A.S.; Ionescu, C.; Ciulu-Costinescu, F.; Popescu, M.; Ciocîlteu, M.V. Cyclodextrins: Enhancing Drug Delivery, Solubility and Bioavailability for Modern Therapeutics. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef] [PubMed]
- Lanevskij, K.; Japertas, P.; Didziapetris, R.; Petrauskas, A. Ionization-specific prediction of blood-brain permeability. J Pharm Sci 2009, 98, 122–134. [Google Scholar] [CrossRef]
- Xing, Y.; Meng, B.; Chen, Q. Cyclodextrin-Containing Drug Delivery Systems and Their Applications in Neurodegenerative Disorders. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Văruț, R.M.; Popescu, A.I.S.; Gaman, S.; Niculescu, C.E.; Niculescu, A.; Dop, D.; Stepan, M.D.; Ionovici, N.; Singer, C.E.; Popescu, C. Cyclodextrin-Based Drug Delivery Systems for Depression: Improving Antidepressant Bioavailability and Targeted Central Nervous System Delivery. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Thiberville, L.; Faivre, V.; Sizun, C.; Dehouck, M.P.; Landry, C.; Baati, R.; Tsapis, N. Cyclodextrin-based formulations for delivering broad-spectrum nerve agent antidote to the central nervous system: stability, physicochemical characterization and application in a human blood-brain barrier model. Int J Pharm 2025, 674, 125505. [Google Scholar] [CrossRef]
- Guo, M.; Sun, X.; Chen, J.; Cai, T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B 2021, 11, 2537–2564. [Google Scholar] [CrossRef]
- Spiridon, I.; Anghel, N. Cyclodextrins as Multifunctional Platforms in Drug Delivery and Beyond: Structural Features, Functional Applications, and Future Trends. Molecules 2025, 30. [Google Scholar] [CrossRef]
- Duan, C.; Liu, W.; Tao, Y.; Liang, F.; Chen, Y.; Xiao, X.; Zhang, G.; Chen, Y.; Hao, C. Two Novel Palbociclib-Resorcinol and Palbociclib-Orcinol Cocrystals with Enhanced Solubility and Dissolution Rate. Pharmaceutics 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.; Weyers, M.; Steenekamp, J.H.; Steyn, J.D.; Gouws, C.; Hamman, J.H. Drug Bioavailability Enhancing Agents of Natural Origin (Bioenhancers) that Modulate Drug Membrane Permeation and Pre-Systemic Metabolism. Pharmaceutics 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.L.; Fu, B.M.; Zhang, Z.J. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv 2017, 24, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Neaz, S.; Alam, M.M.; Imran, A.B. Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles. Heliyon 2024, 10, e39917. [Google Scholar] [CrossRef]
- de Souza, M.M.; Gini, A.L.R.; Moura, J.A.; Scarim, C.B.; Chin, C.M.; Dos Santos, J.L. Prodrug Approach as a Strategy to Enhance Drug Permeability. Pharmaceuticals (Basel) 2025, 18. [Google Scholar] [CrossRef]
- Dong, X.; Brahma, R.K.; Fang, C.; Yao, S.Q. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022, 13, 4239–4269. [Google Scholar] [CrossRef]
- Kopeček, J.; Yang, J. Polymer nanomedicines. Adv Drug Deliv Rev 2020, 156, 40–64. [Google Scholar] [CrossRef]
- Guo, H.; Mi, P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2024, 16, e1988. [Google Scholar] [CrossRef]
- Jiang, Y.; Stenzel, M. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Macromol Biosci 2016, 16, 791–802. [Google Scholar] [CrossRef]
- Mi, P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020, 10, 4557–4588. [Google Scholar] [CrossRef]
- Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017, 9. [Google Scholar] [CrossRef]
- Wu, X.; Shu, Y.; Zheng, Y.; Zhang, P.; Cong, H.; Zou, Y.; Cai, H.; Zha, Z. Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Li, X.; Peng, X.; Zoulikha, M.; Boafo, G.F.; Magar, K.T.; Ju, Y.; He, W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024, 9, 1. [Google Scholar] [CrossRef]
- Đorđević, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res 2022, 12, 500–525. [Google Scholar] [CrossRef]
- Ahmad, A.; Imran, M.; Sharma, N. Precision Nanotoxicology in Drug Development: Current Trends and Challenges in Safety and Toxicity Implications of Customized Multifunctional Nanocarriers for Drug-Delivery Applications. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Buya, A.B.; Mahlangu, P.; Witika, B.A. From lab to industrial development of lipid nanocarriers using quality by design approach. Int J Pharm X 2024, 8, 100266. [Google Scholar] [CrossRef]
- Sammasagi, S.S.; Sutar, K.P.; Hooli, S. Scale-up and quality control challenges in the industrial manufacturing of nanoformulations: current trends and future perspectives. IJSAT-International Journal on Science and Technology 2025, 16. [Google Scholar]
- Gyimesi, G.; Hediger, M.A. Transporter-Mediated Drug Delivery. Molecules 2023, 28. [Google Scholar] [CrossRef]
- Puris, E.; Gynther, M.; Huttunen, J.; Petsalo, A.; Huttunen, K.M. L-type amino acid transporter 1 utilizing prodrugs: How to achieve effective brain delivery and low systemic exposure of drugs. J Control Release 2017, 261, 93–104. [Google Scholar] [CrossRef]
- Montaser, A.; Lehtonen, M.; Gynther, M.; Huttunen, K.M. L-Type Amino Acid Transporter 1-Utilizing Prodrugs of Ketoprofen Can Efficiently Reduce Brain Prostaglandin Levels. Pharmaceutics 2020, 12. [Google Scholar] [CrossRef]
- Patching, S.G. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol Neurobiol 2017, 54, 1046–1077. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Miura, Y.; Mochida, Y.; Miyazaki, T.; Toh, K.; Anraku, Y.; Melo, V.; Liu, X.; Ishii, T.; Nagano, O.; et al. Glucose transporter 1-mediated vascular translocation of nanomedicines enhances accumulation and efficacy in solid tumors. J Control Release 2019, 301, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Vijay, N.; Morris, M.E. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des 2014, 20, 1487–1498. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhao, L.; Jiang, Q.; Sun, Y.; Zhao, D.; Sun, M.; He, Z.; Sun, J.; Wang, Y. Intestinal OCTN2- and MCT1-targeted drug delivery to improve oral bioavailability. Asian J Pharm Sci 2020, 15, 158–173. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, D.; Wang, G.; Jiang, Q.; Guo, M.; Kan, Q.; He, Z.; Sun, J. A novel oral prodrug-targeting transporter MCT 1: 5-fluorouracil-dicarboxylate monoester conjugates. Asian J Pharm Sci 2019, 14, 631–639. [Google Scholar] [CrossRef]
- Hu, C.; Tao, L.; Cao, X.; Chen, L. The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci 2020, 15, 131–144. [Google Scholar] [CrossRef]
- Huttunen, J.; Adla, S.K.; Markowicz-Piasecka, M.; Huttunen, K.M. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Begley, D.J. ABC transporters and the blood-brain barrier. Curr Pharm Des 2004, 10, 1295–1312. [Google Scholar] [CrossRef]
- Colclough, N.; Alluri, R.V.; Tucker, J.W.; Gozalpour, E.; Li, D.; Du, H.; Li, W.; Harlfinger, S.; O'Neill, D.J.; Sproat, G.G.; et al. Utilizing a Dual Human Transporter MDCKII-MDR1-BCRP Cell Line to Assess Efflux at the Blood Brain Barrier. Drug Metab Dispos 2024, 52, 95–105. [Google Scholar] [CrossRef]
- Tian, J.; Han, Z.; Song, D.; Peng, Y.; Xiong, M.; Chen, Z.; Duan, S.; Zhang, L. Engineered Exosome for Drug Delivery: Recent Development and Clinical Applications. Int J Nanomedicine 2023, 18, 7923–7940. [Google Scholar] [CrossRef]
- Koh, H.B.; Kim, H.J.; Kang, S.W.; Yoo, T.H. Exosome-Based Drug Delivery: Translation from Bench to Clinic. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Zeng, H.; Guo, S.; Ren, X.; Wu, Z.; Liu, S.; Yao, X. Current Strategies for Exosome Cargo Loading and Targeting Delivery. Cells 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Hade, M.D.; Suire, C.N.; Suo, Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Wu, J.; Zhang, L.; Huang, N.; Luo, Y. A New Strategy for the Regulation of Neuroinflammation: Exosomes Derived from Mesenchymal Stem Cells. Cell Mol Neurobiol 2024, 44, 24. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Abouelnazar, F.A.; Iqbal, M.A.; Pan, J.; Zheng, X.; Chen, T.; Shen, W.; Yin, J.; Yan, Y.; Liu, P.; et al. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025, 13, 1563427. [Google Scholar] [CrossRef]
- Fu, S.; Wang, Y.; Xia, X.; Zheng, J.C. Exosome engineering: Current progress in cargo loading and targeted delivery. NanoImpact 2020, 20, 100261. [Google Scholar] [CrossRef]
- Xi, X.M.; Xia, S.J.; Lu, R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie 2021, 76, 61–67. [Google Scholar] [CrossRef]
- Chen, C.; Sun, M.; Wang, J.; Su, L.; Lin, J.; Yan, X. Active cargo loading into extracellular vesicles: Highlights the heterogeneous encapsulation behaviour. J Extracell Vesicles 2021, 10, e12163. [Google Scholar] [CrossRef]
- Ahmed, W.; Mushtaq, A.; Ali, S.; Khan, N.; Liang, Y.; Duan, L. Engineering Approaches for Exosome Cargo Loading and Targeted Delivery: Biological versus Chemical Perspectives. ACS Biomater Sci Eng 2024, 10, 5960–5976. [Google Scholar] [CrossRef]
- Kimiz-Gebologlu, I.; Oncel, S.S. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Control Release 2022, 347, 533–543. [Google Scholar] [CrossRef]
- Ahn, S.H.; Ryu, S.W.; Choi, H.; You, S.; Park, J.; Choi, C. Manufacturing Therapeutic Exosomes: from Bench to Industry. Mol Cells 2022, 45, 284–290. [Google Scholar] [CrossRef]
- Wang, C.K.; Tsai, T.H.; Lee, C.H. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. Clin Transl Sci 2024, 17, e13904. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Arora, S. Navigating the Global Regulatory Landscape for Exosome-Based Therapeutics: Challenges, Strategies, and Future Directions. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.Q.; Chng, W.H.; Liang, J.; Yeo, H.Q.; Lee, C.K.; Belaid, M.; Tollemeto, M.; Wacker, M.G.; Czarny, B.; Pastorin, G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J Extracell Vesicles 2022, 11, e12283. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.J.; Wang, M.H.; Ho, C.T.; Pan, M.H. Plant-Derived Extracellular Vesicles: A New Revolutionization of Modern Healthy Diets and Biomedical Applications. J Agric Food Chem 2024, 72, 2853–2878. [Google Scholar] [CrossRef]
- Kim, M.; Jang, H.; Kim, W.; Kim, D.; Park, J.H. Therapeutic Applications of Plant-Derived Extracellular Vesicles as Antioxidants for Oxidative Stress-Related Diseases. Antioxidants (Basel) 2023, 12. [Google Scholar] [CrossRef]
- Karamanidou, T.; Tsouknidas, A. Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers. Int J Mol Sci 2021, 23. [Google Scholar] [CrossRef]
- Alzahrani, F.A.; Khan, M.I.; Kameli, N.; Alsahafi, E.; Riza, Y.M. Plant-Derived Extracellular Vesicles and Their Exciting Potential as the Future of Next-Generation Drug Delivery. Biomolecules 2023, 13. [Google Scholar] [CrossRef]
- Shao, M.; Jin, X.; Chen, S.; Yang, N.; Feng, G. Plant-derived extracellular vesicles -a novel clinical anti-inflammatory drug carrier worthy of investigation. Biomed Pharmacother 2023, 169, 115904. [Google Scholar] [CrossRef]
- Calzoni, E.; Bertoldi, A.; Cusumano, G.; Buratta, S.; Urbanelli, L.; Emiliani, C. Plant-derived extracellular vesicles: natural nanocarriers for biotechnological drugs. Processes 2024, 12, 2938. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, J.; Sun, B.; Wang, X.; Wang, R.; Tian, S.; Miao, M. A New Perspective on Regenerative Medicine: Plant-Derived Extracellular Vesicles. Biomolecules 2025, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhao, J.; Ding, H.; Qiu, M.; Xue, L.; Ge, D.; Wen, G.; Ren, H.; Li, P.; Wang, J. Applications of plant-derived extracellular vesicles in medicine. MedComm (2020) 2024, 5, e741. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, L.; Li, W.; Chang, C.J. Anti-inflammatory and antioxidative effects of Perilla frutescens-derived extracellular vesicles: Insights from Zebrafish models. Mol Immunol 2025, 182, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.Y.; Chuang, C.W.; Huang, Y.C.; Huang, C.J. Therapeutic potential of plant-derived small extracellular vesicles in sepsis: A network meta-analysis. Pharmacol Res 2025, 217, 107795. [Google Scholar] [CrossRef]
- Cui, L.; Perini, G.; Minopoli, A.; Palmieri, V.; De Spirito, M.; Papi, M. Plant-derived extracellular vesicles as a natural drug delivery platform for glioblastoma therapy: A dual role in preserving endothelial integrity while modulating the tumor microenvironment. Int J Pharm X 2025, 10, 100349. [Google Scholar] [CrossRef]
- Xu, X.; Xu, L.; Wen, C.; Xia, J.; Zhang, Y.; Liang, Y. Programming assembly of biomimetic exosomes: An emerging theranostic nanomedicine platform. Mater Today Bio 2023, 22, 100760. [Google Scholar] [CrossRef]
- Lu, M.; Huang, Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 2020, 242, 119925. [Google Scholar] [CrossRef]
- Chen, Y.; Douanne, N.; Wu, T.; Kaur, I.; Tsering, T.; Erzingatzian, A.; Nadeau, A.; Juncker, D.; Nerguizian, V.; Burnier, J.V. Leveraging nature's nanocarriers: Translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. Sci Adv 2025, 11, eads5249. [Google Scholar] [CrossRef]
- Poinsot, V.; Pizzinat, N.; Ong-Meang, V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. Nanomaterials (Basel) 2024, 14. [Google Scholar] [CrossRef]
- Antimisiaris, S.G.; Mourtas, S.; Marazioti, A. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics 2018, 10. [Google Scholar] [CrossRef]
- Kooijmans, S.A.; Vader, P.; van Dommelen, S.M.; van Solinge, W.W.; Schiffelers, R.M. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 2012, 7, 1525–1541. [Google Scholar] [CrossRef]
- Rayamajhi, S.; Nguyen, T.D.T.; Marasini, R.; Aryal, S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater 2019, 94, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Ailuno, G.; Baldassari, S.; Lai, F.; Florio, T.; Caviglioli, G. Exosomes and Extracellular Vesicles as Emerging Theranostic Platforms in Cancer Research. Cells 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Jagtiani, E.; Yeolekar, M.; Naik, S.; Patravale, V. In vitro blood brain barrier models: An overview. J Control Release 2022, 343, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Sivandzade, F.; Cucullo, L. In-vitro blood-brain barrier modeling: A review of modern and fast-advancing technologies. J Cereb Blood Flow Metab 2018, 38, 1667–1681. [Google Scholar] [CrossRef]
- Wang, Y.I.; Abaci, H.E.; Shuler, M.L. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng 2017, 114, 184–194. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Humle, N.; Hede, E.; Moos, T.; Burkhart, A.; Thomsen, L.B. The blood-brain barrier studied in vitro across species. PLoS One 2021, 16, e0236770. [Google Scholar] [CrossRef]
- Bernard-Patrzynski, F.; Lécuyer, M.A.; Puscas, I.; Boukhatem, I.; Charabati, M.; Bourbonnière, L.; Ramassamy, C.; Leclair, G.; Prat, A.; Roullin, V.G. Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS One 2019, 14, e0226302. [Google Scholar] [CrossRef]
- Park, J.S.; Choe, K.; Khan, A.; Jo, M.H.; Park, H.Y.; Kang, M.H.; Park, T.J.; Kim, M.O. Establishing Co-Culture Blood-Brain Barrier Models for Different Neurodegeneration Conditions to Understand Its Effect on BBB Integrity. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef]
- Jiang, L.; Li, S.; Zheng, J.; Li, Y.; Huang, H. Recent Progress in Microfluidic Models of the Blood-Brain Barrier. Micromachines (Basel) 2019, 10. [Google Scholar] [CrossRef]
- Goldeman, C.; Andersen, M.; Al-Robai, A.; Buchholtz, T.; Svane, N.; Ozgür, B.; Holst, B.; Shusta, E.; Hall, V.J.; Saaby, L.; et al. Human induced pluripotent stem cells (BIONi010-C) generate tight cell monolayers with blood-brain barrier traits and functional expression of large neutral amino acid transporter 1 (SLC7A5). Eur J Pharm Sci 2021, 156, 105577. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.R.; Gromnicova, R.; Brachner, A.; Kraev, I.; Romero, I.A.; Neuhaus, W.; Male, D. A hydrogel model of the human blood-brain barrier using differentiated stem cells. PLoS One 2023, 18, e0283954. [Google Scholar] [CrossRef] [PubMed]
- Campisi, M.; Shin, Y.; Osaki, T.; Hajal, C.; Chiono, V.; Kamm, R.D. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018, 180, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER measurement techniques for in vitro barrier model systems. J Lab Autom 2015, 20, 107–126. [Google Scholar] [CrossRef]
- Andjelkovic, A.V.; Stamatovic, S.M.; Phillips, C.M.; Martinez-Revollar, G.; Keep, R.F. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS 2020, 17, 44. [Google Scholar] [CrossRef]
- O'Brown, N.M.; Pfau, S.J.; Gu, C. Bridging barriers: a comparative look at the blood-brain barrier across organisms. Genes Dev 2018, 32, 466–478. [Google Scholar] [CrossRef]
- Watanabe, D.; Nakagawa, S.; Morofuji, Y.; Tóth, A.E.; Vastag, M.; Aruga, J.; Niwa, M.; Deli, M.A. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics 2021, 13. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.Y.; Haqqani, A.S.; Liu, Z.; Sodja, C.; Leclerc, S.; Baumann, E.; Delaney, C.E.; Brunette, E.; Stanimirovic, D.B. Differential Expression of ABC Transporter Genes in Brain Vessels vs. Peripheral Tissues and Vessels from Human, Mouse and Rat. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Hoshi, Y.; Uchida, Y.; Tachikawa, M.; Inoue, T.; Ohtsuki, S.; Terasaki, T. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 2013, 102, 3343–3355. [Google Scholar] [CrossRef]
- Hussner, J.; Foletti, A.; Seibert, I.; Fuchs, A.; Schuler, E.; Malagnino, V.; Grube, M.; Meyer Zu Schwabedissen, H.E. Differences in transport function of the human and rat orthologue of the Organic Anion Transporting Polypeptide 2B1 (OATP2B1). Drug Metab Pharmacokinet 2021, 41, 100418. [Google Scholar] [CrossRef]
- Strazielle, N.; Blondel, S.; Confais, J.; El Khoury, R.; Contamin, H.; Ghersi-Egea, J.F. Molecular determinants of neuroprotection in blood-brain interfaces of the cynomolgus monkey. Front Pharmacol 2025, 16, 1523819. [Google Scholar] [CrossRef] [PubMed]
- Chaves, C.; Do, T.M.; Cegarra, C.; Roudières, V.; Tolou, S.; Thill, G.; Rocher, C.; Didier, M.; Lesuisse, D. Non-Human Primate Blood-Brain Barrier and In Vitro Brain Endothelium: From Transcriptome to the Establishment of a New Model. Pharmaceutics 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, M.B.; Anishchenko, A.M.; Khlebnikov, A.I.; Schepetkin, I.A. Regulation of Blood-Brain Barrier Permeability via JNK Signaling Pathway: Mechanisms and Potential Therapeutic Strategies for Ischemic Stroke, Alzheimer's Disease and Brain Tumors. Molecules 2025, 30. [Google Scholar] [CrossRef] [PubMed]
- Vazana, U.; Veksler, R.; Pell, G.S.; Prager, O.; Fassler, M.; Chassidim, Y.; Roth, Y.; Shahar, H.; Zangen, A.; Raccah, R.; et al. Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery. J Neurosci 2016, 36, 7727–7739. [Google Scholar] [CrossRef]
- Brynildsen, J.K.; Rajan, K.; Henderson, M.X.; Bassett, D.S. Network models to enhance the translational impact of cross-species studies. Nat Rev Neurosci 2023, 24, 575–588. [Google Scholar] [CrossRef]
- de Lange, E.C.M.; van den Brink, W.; Yamamoto, Y.; de Witte, W.E.A.; Wong, Y.C. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discov 2017, 12, 1207–1218. [Google Scholar] [CrossRef]
- Vallianatou, T.; Tsopelas, F.; Tsantili-Kakoulidou, A. Prediction Models for Brain Distribution of Drugs Based on Biomimetic Chromatographic Data. Molecules 2022, 27. [Google Scholar] [CrossRef]
- Loryan, I.; Reichel, A.; Feng, B.; Bundgaard, C.; Shaffer, C.; Kalvass, C.; Bednarczyk, D.; Morrison, D.; Lesuisse, D.; Hoppe, E.; et al. Unbound Brain-to-Plasma Partition Coefficient, K(p,uu,brain)-a Game Changing Parameter for CNS Drug Discovery and Development. Pharm Res 2022, 39, 1321–1341. [Google Scholar] [CrossRef]
- Kalvass, J.C.; Maurer, T.S.; Pollack, G.M. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratios. Drug Metab Dispos 2007, 35, 660–666. [Google Scholar] [CrossRef]
- Li, J.; Jiang, J.; Wu, J.; Bao, X.; Sanai, N. Physiologically Based Pharmacokinetic Modeling of Central Nervous System Pharmacokinetics of CDK4/6 Inhibitors to Guide Selection of Drug and Dosing Regimen for Brain Cancer Treatment. Clin Pharmacol Ther 2021, 109, 494–506. [Google Scholar] [CrossRef]
- Sundheimer, J.K.; Benzel, J.; Longuespée, R.; Burhenne, J.; Pfister, S.M.; Maaß, K.K.; Sauter, M.; Pajtler, K.W. Experimental Insights and Recommendations for Successfully Performing Cerebral Microdialysis With Hydrophobic Drug Candidates. Clinical and translational science 2025, 18, e70226. [Google Scholar] [CrossRef] [PubMed]
- Fridén, M.; Gupta, A.; Antonsson, M.; Bredberg, U.; Hammarlund-Udenaes, M. In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos 2007, 35, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Van Natta, K.; Yeo, H.; Vilenski, O.; Weller, P.E.; Worboys, P.D.; Monshouwer, M. Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid. Drug Metab Dispos 2009, 37, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Välitalo, P.A.; Wong, Y.C.; Huntjens, D.R.; Proost, J.H.; Vermeulen, A.; Krauwinkel, W.; Beukers, M.W.; Kokki, H.; Kokki, M.; et al. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. Eur J Pharm Sci 2018, 112, 168–179. [Google Scholar] [CrossRef]
- Mu, R.J.; Liu, T.L.; Liu, X.D.; Liu, L. PBPK-PD model for predicting morphine pharmacokinetics, CNS effects and naloxone antagonism in humans. Acta Pharmacol Sin 2024, 45, 1752–1764. [Google Scholar] [CrossRef]
- Wu, K.; Li, X.; Zhou, Z.; Zhao, Y.; Su, M.; Cheng, Z.; Wu, X.; Huang, Z.; Jin, X.; Li, J.; et al. Predicting pharmacodynamic effects through early drug discovery with artificial intelligence-physiologically based pharmacokinetic (AI-PBPK) modelling. Front Pharmacol 2024, 15, 1330855. [Google Scholar] [CrossRef]
- Zou, Y.; Yuan, H.; Guo, Z.; Guo, T.; Fu, Z.; Wang, R.; Xu, D.; Wang, Q.; Wang, T.; Chen, L. Predicting the Brain-To-Plasma Unbound Partition Coefficient of Compounds via Formula-Guided Network. J Chem Inf Model 2025, 65, 5099–5112. [Google Scholar] [CrossRef]
- Chung, K.J.; Abdelhafez, Y.G.; Spencer, B.A.; Jones, T.; Tran, Q.; Nardo, L.; Chen, M.S., Jr.; Sarkar, S.; Medici, V.; Lyo, V.; et al. Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. Nat Commun 2025, 16, 3076. [Google Scholar] [CrossRef]
- Mishra, V.; Kumari, N.; Vyas, M.; Aljabali, A.A.A.; Chattaraj, A.; Mishra, Y. Advances in multimodal imaging techniques in nanomedicine: enhancing drug delivery precision. RSC Adv 2025, 15, 27187–27209. [Google Scholar] [CrossRef]
- Varatharaj, A.; Liljeroth, M.; Darekar, A.; Larsson, H.B.W.; Galea, I.; Cramer, S.P. Blood-brain barrier permeability measured using dynamic contrast-enhanced magnetic resonance imaging: a validation study. J Physiol 2019, 597, 699–709. [Google Scholar] [CrossRef]
- Mishra, A.; Payne, C.; Carrascal-Miniño, A.; Sunassee, K.; Halbherr, S.; Pouliopoulos, A.N.; de Rosales, R.T. PET imaging for non-invasive monitoring of 89Zr-Talidox delivery to the brain following focused ultrasound-mediated blood-brain barrier opening. Journal of Controlled Release 2025, 387, 114183. [Google Scholar] [CrossRef]
- Hugon, G.; Goutal, S.; Dauba, A.; Breuil, L.; Larrat, B.; Winkeler, A.; Novell, A.; Tournier, N. [(18)F]2-Fluoro-2-deoxy-sorbitol PET Imaging for Quantitative Monitoring of Enhanced Blood-Brain Barrier Permeability Induced by Focused Ultrasound. Pharmaceutics 2021, 13. [Google Scholar] [CrossRef]
- Pa, C.; Shen, S.; Dai, Y.; Wu, M. Bibliometric analysis of neural injury biomarkers in neurodegenerative diseases: research trends and future perspectives. Front Hum Neurosci 2025, 19, 1614132. [Google Scholar] [CrossRef] [PubMed]
- Gerber, K.S.; Alvarez, G.; Alamian, A.; Behar-Zusman, V.; Downs, C.A. Biomarkers of Neuroinflammation in Traumatic Brain Injury. Clin Nurs Res 2022, 31, 1203–1218. [Google Scholar] [CrossRef] [PubMed]
- Mondello, S.; Guedes, V.A.; Lai, C.; Czeiter, E.; Amrein, K.; Kobeissy, F.; Mechref, Y.; Jeromin, A.; Mithani, S.; Martin, C.; et al. Circulating Brain Injury Exosomal Proteins following Moderate-To-Severe Traumatic Brain Injury: Temporal Profile, Outcome Prediction and Therapy Implications. Cells 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Lopez, B.G.C.; Kohale, I.N.; Du, Z.; Korsunsky, I.; Abdelmoula, W.M.; Dai, Y.; Stopka, S.A.; Gaglia, G.; Randall, E.C.; Regan, M.S.; et al. Multimodal platform for assessing drug distribution and response in clinical trials. Neuro Oncol 2022, 24, 64–77. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Leme Boaro, B.; da Silva Camarinha Oliveira, J.; Patočka, J.; Barbalho Lamas, C.; Tanaka, M.; Laurindo, L.F. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. Pharmaceuticals (Basel) 2025, 18. [Google Scholar] [CrossRef]
- Tanaka, M.; Battaglia, S.; Liloia, D. Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson's, Alzheimer's, and Motor Neuron Disorders. Biomedicines 2025, 13. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Laurindo, L.F.; de Oliveira Zanuso, B.; da Silva, R.M.S.; Gallerani Caglioni, L.; Nunes Junqueira de Moraes, V.B.F.; Fornari Laurindo, L.; Dogani Rodrigues, V.; da Silva Camarinha Oliveira, J.; Beluce, M.E.; et al. AdipoRon's Impact on Alzheimer's Disease-A Systematic Review and Meta-Analysis. Int J Mol Sci 2025, 26. [Google Scholar] [CrossRef]
- Tanaka, M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025, 13. [Google Scholar] [CrossRef]
- Shamul, J.G.; Wang, Z.; Gong, H.; Ou, W.; White, A.M.; Moniz-Garcia, D.P.; Gu, S.; Clyne, A.M.; Quiñones-Hinojosa, A.; He, X. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier. Nat Biomed Eng 2025, 9, 566–598. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.L.; England, T.J.; O'Sullivan, S.E. A Novel Transwell Blood Brain Barrier Model Using Primary Human Cells. Front Cell Neurosci 2019, 13, 230. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, Z.; Chen, F.; Su, J.; Han, J.; Liu, S. Using Regular Porous Membrane-Based Blood-Brain Barrier Model to Screen Brain-Targeted Drugs with Nanochannel Electrochemistry. Anal Chem 2025, 97, 7968–7977. [Google Scholar] [CrossRef] [PubMed]
- Burgio, F.; Gaiser, C.; Brady, K.; Gatta, V.; Class, R.; Schrage, R.; Suter-Dick, L. A Perfused In Vitro Human iPSC-Derived Blood-Brain Barrier Faithfully Mimics Transferrin Receptor-Mediated Transcytosis of Therapeutic Antibodies. Cell Mol Neurobiol 2023, 43, 4173–4187. [Google Scholar] [CrossRef]
- Ohshima, M.; Kamei, S.; Fushimi, H.; Mima, S.; Yamada, T.; Yamamoto, T. Prediction of Drug Permeability Using In Vitro Blood-Brain Barrier Models with Human Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells. Biores Open Access 2019, 8, 200–209. [Google Scholar] [CrossRef]
- Workman, M.J.; Svendsen, C.N. Recent advances in human iPSC-derived models of the blood-brain barrier. Fluids Barriers CNS 2020, 17, 30. [Google Scholar] [CrossRef]
- Mathew-Schmitt, S.; Oerter, S.; Reitenbach, E.; Gätzner, S.; Höchner, A.; Jahnke, H.G.; Piontek, J.; Neuhaus, W.; Brachner, A.; Metzger, M.; et al. Generation of Advanced Blood-Brain Barrier Spheroids Using Human-Induced Pluripotent Stem Cell-Derived Brain Capillary Endothelial-Like Cells. Adv Biol (Weinh) 2025, 9, e2400442. [Google Scholar] [CrossRef]
- Cho, C.F.; Wolfe, J.M.; Fadzen, C.M.; Calligaris, D.; Hornburg, K.; Chiocca, E.A.; Agar, N.Y.R.; Pentelute, B.L.; Lawler, S.E. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun 2017, 8, 15623. [Google Scholar] [CrossRef]
- Logan, S.; Arzua, T.; Canfield, S.G.; Seminary, E.R.; Sison, S.L.; Ebert, A.D.; Bai, X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019, 9, 565–611. [Google Scholar] [CrossRef]
- Hajal, C.; Offeddu, G.S.; Shin, Y.; Zhang, S.; Morozova, O.; Hickman, D.; Knutson, C.G.; Kamm, R.D. Engineered human blood-brain barrier microfluidic model for vascular permeability analyses. Nat Protoc 2022, 17, 95–128. [Google Scholar] [CrossRef]
- Oddo, A.; Peng, B.; Tong, Z.; Wei, Y.; Tong, W.Y.; Thissen, H.; Voelcker, N.H. Advances in Microfluidic Blood-Brain Barrier (BBB) Models. Trends Biotechnol 2019, 37, 1295–1314. [Google Scholar] [CrossRef]
- Vetter, J.; Palagi, I.; Waisman, A.; Blaeser, A. Recent advances in blood-brain barrier-on-a-chip models. Acta Biomater 2025, 197, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Chaulagain, B.; Gothwal, A.; Lamptey, R.N.L.; Trivedi, R.; Mahanta, A.K.; Layek, B.; Singh, J. Experimental Models of In Vitro Blood-Brain Barrier for CNS Drug Delivery: An Evolutionary Perspective. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef] [PubMed]
- Park, T.E.; Mustafaoglu, N.; Herland, A.; Hasselkus, R.; Mannix, R.; FitzGerald, E.A.; Prantil-Baun, R.; Watters, A.; Henry, O.; Benz, M.; et al. Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 2019, 10, 2621. [Google Scholar] [CrossRef] [PubMed]
- Katt, M.E.; Shusta, E.V. In vitro Models of the Blood-Brain Barrier: Building in physiological complexity. Curr Opin Chem Eng 2020, 30, 42–52. [Google Scholar] [CrossRef]
- Filieri, S.; Miciaccia, M.; Armenise, D.; Baldelli, O.M.; Liturri, A.; Ferorelli, S.; Sardanelli, A.M.; Perrone, M.G.; Scilimati, A. Can Focused Ultrasound Overcome the Failure of Chemotherapy in Treating Pediatric Diffuse Intrinsic Pontine Glioma Due to a Blood-Brain Barrier Obstacle? Pharmaceuticals (Basel) 2025, 18. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, T.; Qin, S.; Huang, Z.; Zhou, L.; Shi, J.; Nice, E.C.; Xie, N.; Huang, C.; Shen, Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022, 15, 132. [Google Scholar] [CrossRef]
- Rahman, R.; Ventz, S.; McDunn, J.; Louv, B.; Reyes-Rivera, I.; Polley, M.C.; Merchant, F.; Abrey, L.E.; Allen, J.E.; Aguilar, L.K.; et al. Leveraging external data in the design and analysis of clinical trials in neuro-oncology. Lancet Oncol 2021, 22, e456–e465. [Google Scholar] [CrossRef]
- Chen, K.T.; Chai, W.Y.; Lin, Y.J.; Lin, C.J.; Chen, P.Y.; Tsai, H.C.; Huang, C.Y.; Kuo, J.S.; Liu, H.L.; Wei, K.C. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci Adv 2021, 7. [Google Scholar] [CrossRef]
- Liu, Y.; Castro Bravo, K.M.; Liu, J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz 2021, 6, 78–94. [Google Scholar] [CrossRef]
- McDannold, N.; Wen, P.Y.; Reardon, D.A.; Fletcher, S.M.; Golby, A.J. Cavitation monitoring, treatment strategy, and acoustic simulations of focused ultrasound blood-brain barrier disruption in patients with glioblastoma. J Control Release 2024, 372, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Armstrong, T.S.; Gilbert, M.R.; Celiku, O. A critical analysis of neuro-oncology clinical trials. Neuro Oncol 2023, 25, 1658–1671. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Q.; Feng, Z.; Qin, M.; Zhang, Z.; Jiang, J.; Ren, T.; Liu, X.; Jeffrey Brinker, C.; Zhao, Y.; et al. Unlocking tumor barrier: annexin A2-mediated transcytosis boosts drug delivery in pancreatic and breast tumors. Nat Commun 2025, 16, 6531. [Google Scholar] [CrossRef] [PubMed]
- Hallschmid, M. Intranasal Insulin for Alzheimer's Disease. CNS Drugs 2021, 35, 21–37. [Google Scholar] [CrossRef]
- Wong, C.Y.J.; Baldelli, A.; Hoyos, C.M.; Tietz, O.; Ong, H.X.; Traini, D. Insulin Delivery to the Brain via the Nasal Route: Unraveling the Potential for Alzheimer's Disease Therapy. Drug Deliv Transl Res 2024, 14, 1776–1793. [Google Scholar] [CrossRef]
- Chen, L.; Guan, Y.; Wang, S.; Han, X.; Guo, F.; Wang, Y. Engineered nanoplatforms for brain-targeted co-delivery of phytochemicals in Alzheimer's disease: Rational design, blood-brain barrier penetration, and multi-target therapeutic synergy. Neurotherapeutics 2025, 22, e00722. [Google Scholar] [CrossRef]
- Wei, Y.; Xia, X.; Wang, X.; Yang, W.; He, S.; Wang, L.; Chen, Y.; Zhou, Y.; Chen, F.; Li, H.; et al. Enhanced BBB penetration and microglia-targeting nanomodulator for the two-pronged modulation of chronically activated microglia-mediated neuroinflammation in Alzheimer's disease. Acta Pharm Sin B 2025, 15, 1098–1111. [Google Scholar] [CrossRef]
- Oosthoek, M.; Vermunt, L.; de Wilde, A.; Bongers, B.; Antwi-Berko, D.; Scheltens, P.; van Bokhoven, P.; Vijverberg, E.G.B.; Teunissen, C.E. Utilization of fluid-based biomarkers as endpoints in disease-modifying clinical trials for Alzheimer's disease: a systematic review. Alzheimers Res Ther 2024, 16, 93. [Google Scholar] [CrossRef]
- Elghanam, Y.; Purja, S.; Kim, E.Y. Biomarkers as Endpoints in Clinical Trials for Alzheimer's Disease. J Alzheimers Dis 2024, 99, 693–703. [Google Scholar] [CrossRef]
- Pascoal, T.A.; Aguzzoli, C.S.; Lussier, F.Z.; Crivelli, L.; Suemoto, C.K.; Fortea, J.; Rosa-Neto, P.; Zimmer, E.R.; Ferreira, P.C.L.; Bellaver, B. Insights into the use of biomarkers in clinical trials in Alzheimer's disease. EBioMedicine 2024, 108, 105322. [Google Scholar] [CrossRef]
- Petersen, R.C.; Graf, A.; Brady, C.; De Santi, S.; Florian, H.; Landen, J.; Pontecorvo, M.; Randolph, C.; Sink, K.; Carrillo, M.; et al. Operationalizing selection criteria for clinical trials in Alzheimer's disease: Biomarker and clinical considerations: Proceedings from the Alzheimer's Association Research Roundtable (AARR) Fall 2021 meeting. Alzheimers Dement (N Y) 2025, 11, e70038. [Google Scholar] [CrossRef] [PubMed]
- Monge-Fuentes, V.; Biolchi Mayer, A.; Lima, M.R.; Geraldes, L.R.; Zanotto, L.N.; Moreira, K.G.; Martins, O.P.; Piva, H.L.; Felipe, M.S.S.; Amaral, A.C.; et al. Dopamine-loaded nanoparticle systems circumvent the blood-brain barrier restoring motor function in mouse model for Parkinson's Disease. Sci Rep 2021, 11, 15185. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Yang, L.; Kang, J.; Liu, B.; Zhang, D.; Wang, L.; Wang, W.; Wang, Q. Improving treatment for Parkinson's disease: Harnessing photothermal and phagocytosis-driven delivery of levodopa nanocarriers across the blood-brain barrier. Asian J Pharm Sci 2024, 19, 100963. [Google Scholar] [CrossRef] [PubMed]
- Leta, V.; Klingelhoefer, L.; Longardner, K.; Campagnolo, M.; Levent, H.; Aureli, F.; Metta, V.; Bhidayasiri, R.; Chung-Faye, G.; Falup-Pecurariu, C.; et al. Gastrointestinal barriers to levodopa transport and absorption in Parkinson's disease. Eur J Neurol 2023, 30, 1465–1480. [Google Scholar] [CrossRef]
- Qiu, Y.; Jacobs, D.M.; Messer, K.; Salmon, D.P.; Wellington, C.L.; Stukas, S.; Revta, C.; Brewer, J.B.; Léger, G.C.; Askew, B.; et al. Prognostic value of plasma biomarkers for informing clinical trial design in mild-to-moderate Alzheimer's disease. Alzheimers Res Ther 2025, 17, 97. [Google Scholar] [CrossRef]
- Asgharian, P.; Quispe, C.; Herrera-Bravo, J.; Sabernavaei, M.; Hosseini, K.; Forouhandeh, H.; Ebrahimi, T.; Sharafi-Badr, P.; Tarhriz, V.; Soofiyani, S.R.; et al. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front Pharmacol 2022, 13, 926607. [Google Scholar] [CrossRef]
- Küpeli Akkol, E.; Tatlı Çankaya, I.; Şeker Karatoprak, G.; Carpar, E.; Sobarzo-Sánchez, E.; Capasso, R. Natural Compounds as Medical Strategies in the Prevention and Treatment of Psychiatric Disorders Seen in Neurological Diseases. Front Pharmacol 2021, 12, 669638. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Kwan, A.T.H.; Mansur, R.B.; Oliveira-Maia, A.J.; Teopiz, K.M.; Maletic, V.; Suppes, T.; Stahl, S.M.; Rosenblat, J.D. Psychedelics for the Treatment of Psychiatric Disorders: Interpreting and Translating Available Evidence and Guidance for Future Research. Am J Psychiatry 2025, 182, 21–32. [Google Scholar] [CrossRef]
- Barakji, J.; Korang, S.K.; Feinberg, J.; Maagaard, M.; Mathiesen, O.; Gluud, C.; Jakobsen, J.C. Cannabinoids versus placebo for pain: A systematic review with meta-analysis and Trial Sequential Analysis. PLoS One 2023, 18, e0267420. [Google Scholar] [CrossRef]
- Jiang, P.; Li, J. Recent advances in biomimetic nanodelivery systems for the treatment of depression. Mater Today Bio 2025, 32, 101781. [Google Scholar] [CrossRef]
- Davis, K.D.; Aghaeepour, N.; Ahn, A.H.; Angst, M.S.; Borsook, D.; Brenton, A.; Burczynski, M.E.; Crean, C.; Edwards, R.; Gaudilliere, B.; et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat Rev Neurol 2020, 16, 381–400. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M. Beyond the boundaries: Transitioning from categorical to dimensional paradigms in mental health diagnostics. Adv Clin Exp Med 2024, 33, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Battaglia, S. Dualistic Dynamics in Neuropsychiatry: From Monoaminergic Modulators to Multiscale Biomarker Maps. Biomedicines 2025, 13. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Szabó, Á.; Vécsei, L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Szabó, Á.; Galla, Z.; Spekker, E.; Szűcs, M.; Martos, D.; Takeda, K.; Ozaki, K.; Inoue, H.; Yamamoto, S.; Toldi, J.; et al. Oxidative and Excitatory Neurotoxic Stresses in CRISPR/Cas9-Induced Kynurenine Aminotransferase Knockout Mice: A Novel Model for Despair-Based Depression and Post-Traumatic Stress Disorder. Front Biosci (Landmark Ed) 2025, 30, 25706. [Google Scholar] [CrossRef]
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022, 27. [Google Scholar] [CrossRef]
- Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.N.; Kumar, S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024, 12. [Google Scholar] [CrossRef]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front Pharmacol 2019, 10, 1614. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, X.; Pang, X.; Ma, K.; Li, L.; Song, Y.; Hou, D.; Wang, X. Pharmacological effects, molecular mechanisms and strategies to improve bioavailability of curcumin in the treatment of neurodegenerative diseases. Front Pharmacol 2025, 16, 1625821. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Justyńska, W.; Czpakowska, J.; Smolińska, E.; Bielenin, A.; Glabinski, A.; Szpakowski, P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024, 13. [Google Scholar] [CrossRef]
- Ahn-Horst, R.Y.; Turner, E.H.; Kesselheim, A.S. Characteristics of Trials Preceding FDA Approval of Novel Psychiatric Drugs. JAMA Netw Open 2025, 8, e2456588. [Google Scholar] [CrossRef]
- Markowitz, J.C.; Milrod, B.L. Lost in Translation: The Value of Psychiatric Clinical Trials. J Clin Psychiatry 2022, 83. [Google Scholar] [CrossRef]
- Lipsman, N.; Meng, Y.; Bethune, A.J.; Huang, Y.; Lam, B.; Masellis, M.; Herrmann, N.; Heyn, C.; Aubert, I.; Boutet, A.; et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound. Nat Commun 2018, 9, 2336. [Google Scholar] [CrossRef]
- Gasca-Salas, C.; Fernández-Rodríguez, B.; Pineda-Pardo, J.A.; Rodríguez-Rojas, R.; Obeso, I.; Hernández-Fernández, F.; Del Álamo, M.; Mata, D.; Guida, P.; Ordás-Bandera, C.; et al. Blood-brain barrier opening with focused ultrasound in Parkinson's disease dementia. Nat Commun 2021, 12, 779. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Pandey, M.; Chin, P.X.; Phang, Y.L.; Cheah, J.Y.; Ooi, S.C.; Mak, K.K.; Pichika, M.R.; Kesharwani, P.; Hussain, Z.; et al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv Transl Res 2018, 8, 1545–1563. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, M.J.; Sevin, E.; Gosselet, F.; Lima, J.; Coelho, M.A.N.; Loureiro, J.A.; Pereira, M.C. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm 2018, 545, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Kreatsoulas, D.; Damante, M.; Cua, S.; Lonser, R.R. Adjuvant convection-enhanced delivery for the treatment of brain tumors. J Neurooncol 2024, 166, 243–255. [Google Scholar] [CrossRef]
- Upadhyay, R.; Ghosh, P.; Desavathu, M. Advancement in the Nose-to-Brain Drug delivery of FDA-approved drugs for the better management of Depression and Psychiatric disorders. Int J Pharm 2024, 667, 124866. [Google Scholar] [CrossRef]
- Yang, H.; Liu, R.; Huang, J.; Zhao, Y.; Zou, C.; Wu, D.; Zhao, H. Nose-to-brain delivery of biomineralized silk fibroin nanoparticles synergistically extinguish neuroinflammation for efficient depressive-like symptoms alleviation. Int J Biol Macromol 2025, 322, 146761. [Google Scholar] [CrossRef]
- Zünkeler, B.; Carson, R.E.; Olson, J.; Blasberg, R.G.; DeVroom, H.; Lutz, R.J.; Saris, S.C.; Wright, D.C.; Kammerer, W.; Patronas, N.J.; et al. Quantification and pharmacokinetics of blood-brain barrier disruption in humans. J Neurosurg 1996, 85, 1056–1065. [Google Scholar] [CrossRef]
- Burks, S.R.; Kersch, C.N.; Witko, J.A.; Pagel, M.A.; Sundby, M.; Muldoon, L.L.; Neuwelt, E.A.; Frank, J.A. Blood-brain barrier opening by intracarotid artery hyperosmolar mannitol induces sterile inflammatory and innate immune responses. Proc Natl Acad Sci U S A 2021, 118. [Google Scholar] [CrossRef]
- Wang, W.; Marín-Ramos, N.I.; He, H.; Zeng, S.; Cho, H.Y.; Swenson, S.D.; Zheng, L.; Epstein, A.L.; Schönthal, A.H.; Hofman, F.M.; et al. NEO100 enables brain delivery of blood‒brain barrier impermeable therapeutics. Neuro Oncol 2021, 23, 63–75. [Google Scholar] [CrossRef]
- Pinkiewicz, M.; Pinkiewicz, M.; Walecki, J.; Zaczyński, A.; Zawadzki, M. Breaking Barriers in Neuro-Oncology: A Scoping Literature Review on Invasive and Non-Invasive Techniques for Blood-Brain Barrier Disruption. Cancers (Basel) 2024, 16. [Google Scholar] [CrossRef] [PubMed]
- Mollnes, T.E.; Storm, B.S.; Brekke, O.L.; Nilsson, P.H.; Lambris, J.D. Application of the C3 inhibitor compstatin in a human whole blood model designed for complement research - 20 years of experience and future perspectives. Semin Immunol 2022, 59, 101604. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Hu, D.; Wang, M.; Zipfel, P.F.; Hu, Y. Complement in Hemolysis- and Thrombosis- Related Diseases. Front Immunol 2020, 11, 1212. [Google Scholar] [CrossRef] [PubMed]
- Roumenina, L.T.; Bartolucci, P.; Pirenne, F. The role of Complement in Post-Transfusion Hemolysis and Hyperhemolysis Reaction. Transfus Med Rev 2019, 33, 225–230. [Google Scholar] [CrossRef]
- Poillerat, V.; Gentinetta, T.; Leon, J.; Wassmer, A.; Edler, M.; Torset, C.; Luo, D.; Tuffin, G.; Roumenina, L.T. Hemopexin as an Inhibitor of Hemolysis-Induced Complement Activation. Front Immunol 2020, 11, 1684. [Google Scholar] [CrossRef]
- Nguyen-Peyre, K.-A.; Meuleman, M.-S.; Bodivit, G.; Kassasseya, C.; Decrouy, X.; Vingert, B.; Bencheikh, L.; Lambris, J.; Pirenne, F.; Roumenina, L.T. Red Blood Cell-Derived Particles Induce Endothelial Damage Via the Alternative Complement Pathway. 2024.
- Kang, H.J.; Roh, J.; Lee, H.; Park, E.M.; Lee, H.W.; Lee, J.Y.; Hwang, J.H.; Shim, J.; Choi, K. Complement Activation and Hemolysis in Non-human Primates Following Transfusion of Genetically Modified Pig Red Blood Cells. Ann Lab Med 2025, 45, 509–519. [Google Scholar] [CrossRef]
- Alharbi, Y.M. Phenotype- and age-associated variations in non-specific agglutinins and complement components (C3 and C5a) in camels: Implications for transfusion compatibility and immune function. Vet World 2025, 18, 2811–2822. [Google Scholar] [CrossRef]
- Singh, D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease. J Neuroinflammation 2022, 19, 206. [Google Scholar] [CrossRef]
- Müller, L.; Di Benedetto, S. Neuroimmune crosstalk in chronic neuroinflammation: microglial interactions and immune modulation. Front Cell Neurosci 2025, 19, 1575022. [Google Scholar] [CrossRef]
- West, P.K.; McCorkindale, A.N.; Guennewig, B.; Ashhurst, T.M.; Viengkhou, B.; Hayashida, E.; Jung, S.R.; Butovsky, O.; Campbell, I.L.; Hofer, M.J. The cytokines interleukin-6 and interferon-α induce distinct microglia phenotypes. J Neuroinflammation 2022, 19, 96. [Google Scholar] [CrossRef]
- Fornari Laurindo, L.; Aparecido Dias, J.; Cressoni Araújo, A.; Torres Pomini, K.; Machado Galhardi, C.; Rucco Penteado Detregiachi, C.; Santos de Argollo Haber, L.; Donizeti Roque, D.; Dib Bechara, M.; Vialogo Marques de Castro, M.; et al. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2023, 14, 1305933. [Google Scholar] [CrossRef] [PubMed]
- Alaei, M.; Koushki, K.; Taebi, K.; Yousefi Taba, M.; Keshavarz Hedayati, S.; Keshavarz Shahbaz, S. Metal nanoparticles in neuroinflammation: impact on microglial dynamics and CNS function. RSC Adv 2025, 15, 5426–5451. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Francis, N.L.; Calvelli, H.R.; Moghe, P.V. Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioeng 2020, 4, 030902. [Google Scholar] [CrossRef] [PubMed]
- Benita, B.A.; Koss, K.M. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024, 17, 1443985. [Google Scholar] [CrossRef]
- Weber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front Bioeng Biotechnol 2018, 6, 99. [Google Scholar] [CrossRef]
- Nalezinková, M. In vitro hemocompatibility testing of medical devices. Thromb Res 2020, 195, 146–150. [Google Scholar] [CrossRef]
- van Oeveren, W. Obstacles in haemocompatibility testing. Scientifica (Cairo) 2013, 2013, 392584. [Google Scholar] [CrossRef]
- Seyfert, U.T.; Biehl, V.; Schenk, J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomol Eng 2002, 19, 91–96. [Google Scholar] [CrossRef]
- Tienda-Vazquez, M.A.; Arredondo, P.; Mejía-Delgadillo, X.; Rodríguez-González, J.A.; Soto-Cajiga, J.A.; Sabath, E.; Lozano, O.; Almanza-Arjona, Y.C. Biological testing unification for hemodialysis membranes evaluation: A step towards standardization. Biomater Adv 2025, 169, 214165. [Google Scholar] [CrossRef]
- Tujula, I.; Hyvärinen, T.; Lotila, J.; Rogal, J.; Voulgaris, D.; Sukki, L.; Tornberg, K.; Korpela, K.; Jäntti, H.; Malm, T.; et al. Modeling neuroinflammatory interactions between microglia and astrocytes in a human iPSC-based coculture platform. Cell Commun Signal 2025, 23, 298. [Google Scholar] [CrossRef] [PubMed]
- Guttikonda, S.R.; Sikkema, L.; Tchieu, J.; Saurat, N.; Walsh, R.M.; Harschnitz, O.; Ciceri, G.; Sneeboer, M.; Mazutis, L.; Setty, M.; et al. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nat Neurosci 2021, 24, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.Y.; Richards, W.D.; Parham, K.T.; Clark, S.G.; Greuel, K.; Polzin, B.; Smith, S.W.; Lebakken, C.S. Neural organoids incorporating microglia to assess neuroinflammation and toxicities induced by known developmental neurotoxins. Curr Res Toxicol 2025, 9, 100252. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Gauthier, S.; Chandekar, S.A.; Hviid Hahn-Pedersen, J.; Bentsen, M.A.; Zetterberg, H. Neuroinflammatory fluid biomarkers in patients with Alzheimer's disease: a systematic literature review. Mol Psychiatry 2025, 30, 2783–2798. [Google Scholar] [CrossRef]
- Roveta, F.; Bonino, L.; Piella, E.M.; Rainero, I.; Rubino, E. Neuroinflammatory Biomarkers in Alzheimer's Disease: From Pathophysiology to Clinical Implications. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Battaglia, S.; Tanaka, M. Screen, Sample, Stratify: Biomarkers and Machine Learning Compress Dementia Pathways. 2026, 14, 159. [Google Scholar] [CrossRef]
- Tanaka, M.; Battaglia, S. From Biomarkers to Behavior: Mapping the Neuroimmune Web of Pain, Mood, and Memory. Biomedicines 2025, 13. [Google Scholar] [CrossRef]
- Wei, Y.; Quan, L.; Zhou, C.; Zhan, Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond) 2018, 13, 1495–1512. [Google Scholar] [CrossRef]
- Dogra, P.; Adolphi, N.L.; Wang, Z.; Lin, Y.S.; Butler, K.S.; Durfee, P.N.; Croissant, J.G.; Noureddine, A.; Coker, E.N.; Bearer, E.L.; et al. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nat Commun 2018, 9, 4551. [Google Scholar] [CrossRef]
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today 2015, 10, 487–510. [Google Scholar] [CrossRef] [PubMed]
- Ngo, W.; Ahmed, S.; Blackadar, C.; Bussin, B.; Ji, Q.; Mladjenovic, S.M.; Sepahi, Z.; Chan, W.C.W. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev 2022, 185, 114238. [Google Scholar] [CrossRef] [PubMed]
- Lérida-Viso, A.; Estepa-Fernández, A.; García-Fernández, A.; Martí-Centelles, V.; Martínez-Máñez, R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev 2023, 201, 115049. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.J.; Hur, W.; Kashiwagi, S.; Choi, H.S. Design Considerations for Organ-Selective Nanoparticles. ACS Nano 2025, 19, 14605–14626. [Google Scholar] [CrossRef]
- Zhu, G.H.; Gray, A.B.C.; Patra, H.K. Nanomedicine: controlling nanoparticle clearance for translational success. Trends Pharmacol Sci 2022, 43, 709–711. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, X.; Chen, X.; Fang, W.; Yu, K.; Gu, W.; Wei, Y.; Zheng, H.; Piao, J.; Li, F. Strategies to Regulate the Degradation and Clearance of Mesoporous Silica Nanoparticles: A Review. Int J Nanomedicine 2024, 19, 5859–5878. [Google Scholar] [CrossRef]
- Wang, L.; Quine, S.; Frickenstein, A.N.; Lee, M.; Yang, W.; Sheth, V.M.; Bourlon, M.D.; He, Y.; Lyu, S.; Garcia-Contreras, L.; et al. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. Adv Funct Mater 2024, 34. [Google Scholar] [CrossRef]
- Zelepukin, I.V.; Shevchenko, K.G.; Deyev, S.M. Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery. Nat Commun 2024, 15, 4366. [Google Scholar] [CrossRef]
- Bresinsky, M.; Goepferich, A. Control of biomedical nanoparticle distribution and drug release in vivo by complex particle design strategies. Eur J Pharm Biopharm 2025, 208, 114634. [Google Scholar] [CrossRef]
- Hidayat, A.F.; Wardhana, Y.W.; Suwendar, S.; Mohammed, A.F.A.; Mahmoud, S.A.; Elamin, K.M.; Wathoni, N. A Review on QbD-Driven Optimization of Lipid Nanoparticles for Oral Drug Delivery: From Framework to Formulation. Int J Nanomedicine 2025, 20, 8611–8651. [Google Scholar] [CrossRef]
- Yang, S.; Hu, X.; Zhu, J.; Zheng, B.; Bi, W.; Wang, X.; Wu, J.; Mi, Z.; Wu, Y. Aspects and Implementation of Pharmaceutical Quality by Design from Conceptual Frameworks to Industrial Applications. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Pielenhofer, J.; Meiser, S.L.; Gogoll, K.; Ciciliani, A.M.; Denny, M.; Klak, M.; Lang, B.M.; Staubach, P.; Grabbe, S.; Schild, H.; et al. Quality by Design (QbD) Approach for a Nanoparticulate Imiquimod Formulation as an Investigational Medicinal Product. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Walsh, I.; Myint, M.; Nguyen-Khuong, T.; Ho, Y.S.; Ng, S.K.; Lakshmanan, M. Harnessing the potential of machine learning for advancing "Quality by Design" in biomanufacturing. MAbs 2022, 14, 2013593. [Google Scholar] [CrossRef] [PubMed]
- Suriyaamporn, P.; Kansom, T.; Pamornpathomkul, B.; Ngawhirunpat, T.; Opanasopit, P.; Ramjan, S. Predictive modeling approach using machine learning-integrated design of experiments in quality by design for optimizing resveratrol-loaded polymeric nanoparticle formulation. Int J Pharm 2025, 683, 126080. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M. Special Issue "Translating Molecular Psychiatry: From Biomarkers to Personalized Therapies. Int J Mol Sci 2025, 26. [Google Scholar] [CrossRef] [PubMed]
- Palakurthi, S.S.; Charbe, N.B.; Kapre, S.; Zheng, W.; Thalla, M.; Palaniappan, D.; Lu, D.; Palakurthi, S. Evaluating critical quality attributes and novel drug release testing of difluprednate nanoemulsions. Int J Pharm 2025, 674, 125431. [Google Scholar] [CrossRef]
- Soncin, S.; Lo Cicero, V.; Astori, G.; Soldati, G.; Gola, M.; Sürder, D.; Moccetti, T. A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice. J Transl Med 2009, 7, 78. [Google Scholar] [CrossRef]
- Vuillemenot, B.R.; Korte, S.; Wright, T.L.; Adams, E.L.; Boyd, R.B.; Butt, M.T. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic. Toxicol Sci 2016, 152, 3–9. [Google Scholar] [CrossRef]
- Cooper, J.F.; Latta, K.S.; Smith, D. Automated endotoxin testing program for high-risk-level compounded sterile preparations at an institutional compounding pharmacy. Am J Health Syst Pharm 2010, 67, 280–286. [Google Scholar] [CrossRef]
- Cooper, J.F.; Thoma, L.A. Screening extemporaneously compounded intraspinal injections with the bacterial endotoxins test. Am J Health Syst Pharm 2002, 59, 2426–2433. [Google Scholar] [CrossRef]
- Dubczak, J.; Reid, N.; Tsuchiya, M. Evaluation of limulus amebocyte lysate and recombinant endotoxin alternative assays for an assessment of endotoxin detection specificity. Eur J Pharm Sci 2021, 159, 105716. [Google Scholar] [CrossRef]
- Secretan, P.H.; Annereau, M.; Do, B. A Risk-Based Framework for Hospital Compounding: Integrating Degradation Mechanisms and Predictive Toxicology. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Pallerla, S.; Pires, I.S.; Melo, M.B.; Yun, D.; Wagner, A.; Budai, M.; Kumar, D.; Katinger, D.; Sayeed, E.; Lombardo, A.; et al. Scale-up and cGMP manufacturing of next-generation vaccine adjuvant saponin/MPLA nanoParticles (SMNP). J Pharm Sci 2025, 114, 103913. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.; Costa, C.P.; Loureiro, J.A.; Alves, J.; Peixoto, A.F.; Forbes, B.; Sousa Lobo, J.M.; Silva, A.C. Double Optimization of Rivastigmine-Loaded Nanostructured Lipid Carriers (NLC) for Nose-to-Brain Delivery Using the Quality by Design (QbD) Approach: Formulation Variables and Instrumental Parameters. Pharmaceutics 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Laggner, M.; Gugerell, A.; Bachmann, C.; Hofbauer, H.; Vorstandlechner, V.; Seibold, M.; Gouya Lechner, G.; Peterbauer, A.; Madlener, S.; Demyanets, S. Reproducibility of GMP-compliant production of therapeutic stressed peripheral blood mononuclear cell-derived secretomes, a novel class of biological medicinal products. Stem cell research & therapy 2020, 11, 9. [Google Scholar]
- Sanyal, G.; Särnefält, A.; Kumar, A. Considerations for bioanalytical characterization and batch release of COVID-19 vaccines. NPJ Vaccines 2021, 6, 53. [Google Scholar] [CrossRef]
- Laggner, M.; Gugerell, A.; Bachmann, C.; Hofbauer, H.; Vorstandlechner, V.; Seibold, M.; Gouya Lechner, G.; Peterbauer, A.; Madlener, S.; Demyanets, S.; et al. Reproducibility of GMP-compliant production of therapeutic stressed peripheral blood mononuclear cell-derived secretomes, a novel class of biological medicinal products. Stem Cell Res Ther 2020, 11, 9. [Google Scholar] [CrossRef]
- Csóka, I.; Ismail, R.; Jójárt-Laczkovich, O.; Pallagi, E. Regulatory Considerations, Challenges and Risk-based Approach in Nanomedicine Development. Curr Med Chem 2021, 28, 7461–7476. [Google Scholar] [CrossRef]
- Ali, F.; Neha, K.; Parveen, S. Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. Journal of Drug Delivery Science and Technology 2023, 80, 104118. [Google Scholar] [CrossRef]
- Dobrovolskaia, M.A. Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory. Front Immunol 2022, 13, 984252. [Google Scholar] [CrossRef]
- Giannakou, C.; Park, M.; Bosselaers, I.E.M.; de Jong, W.H.; van der Laan, J.W.; van Loveren, H.; Vandebriel, R.J.; Geertsma, R.E. Nonclinical regulatory immunotoxicity testing of nanomedicinal products: Proposed strategy and possible pitfalls. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020, 12, e1633. [Google Scholar] [CrossRef] [PubMed]
- Hofer, S.; Hofstätter, N.; Punz, B.; Hasenkopf, I.; Johnson, L.; Himly, M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022, 14, e1804. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolskaia, M.A.; McNeil, S.E. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 2013, 172, 456–466. [Google Scholar] [CrossRef] [PubMed]
- van Gerven, J.; Bonelli, M. Commentary on the EMA Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products. Br J Clin Pharmacol 2018, 84, 1401–1409. [Google Scholar] [CrossRef]
- Musazzi, U.M.; Franzè, S.; Condorelli, F.; Minghetti, P.; Caliceti, P. Feeding Next-Generation Nanomedicines to Europe: Regulatory and Quality Challenges. Adv Healthc Mater 2023, 12, e2301956. [Google Scholar] [CrossRef]
- Zhuang, Y.; Mendes, B.B.; Menon, D.; Oliveira, J.; Chen, X.; Duman, F.D.; Conniot, J.; Mercado, S.; Liu, X.; Zhang, S.Y.; et al. Multiscale Profiling of Nanoscale Metal-Organic Framework Biocompatibility and Immune Interactions. Adv Healthc Mater 2025, 14, e01809. [Google Scholar] [CrossRef]
- Nabi, A.E.; Pouladvand, P.; Liu, L.; Hua, N.; Ayubcha, C. Machine Learning in Drug Development for Neurological Diseases: A Review of Blood Brain Barrier Permeability Prediction Models. Mol Inform 2025, 44, e202400325. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Feng, H.; Li, S.; Liu, M.; Zhao, J.; Liu, H. Prediction of the Blood-Brain Barrier (BBB) Permeability of Chemicals Based on Machine-Learning and Ensemble Methods. Chem Res Toxicol 2021, 34, 1456–1467. [Google Scholar] [CrossRef]
- Gülave, B.; van den Maagdenberg, H.W.; van Boven, L.; van Westen, G.J.P.; de Lange, E.C.M.; van Hasselt, J.G.C. Prediction of the Extent of Blood-Brain Barrier Transport Using Machine Learning and Integration into the LeiCNS-PK3.0 Model. Pharm Res 2025, 42, 281–289. [Google Scholar] [CrossRef]
- Mehta, P.; Soliman, A.; Rodriguez-Vera, L.; Schmidt, S.; Muniz, P.; Rodriguez, M.; Forcadell, M.; Gonzalez-Perez, E.; Vozmediano, V. Interspecies Brain PBPK Modeling Platform to Predict Passive Transport through the Blood-Brain Barrier and Assess Target Site Disposition. Pharmaceutics 2024, 16. [Google Scholar] [CrossRef]
- Cichońska, A.; Ravikumar, B.; Rahman, R. AI for targeted polypharmacology: The next frontier in drug discovery. Curr Opin Struct Biol 2024, 84, 102771. [Google Scholar] [CrossRef] [PubMed]
- Abdelsayed, M. AI-Driven Polypharmacology in Small-Molecule Drug Discovery. Int J Mol Sci 2025, 26. [Google Scholar] [CrossRef] [PubMed]
- Noor, F.; Asif, M.; Ashfaq, U.A.; Qasim, M.; Tahir Ul Qamar, M. Machine learning for synergistic network pharmacology: a comprehensive overview. Brief Bioinform 2023, 24. [Google Scholar] [CrossRef]
- Chaudhari, R.; Fong, L.W.; Tan, Z.; Huang, B.; Zhang, S. An up-to-date overview of computational polypharmacology in modern drug discovery. Expert Opin Drug Discov 2020, 15, 1025–1044. [Google Scholar] [CrossRef] [PubMed]
- Lambrinidis, G.; Tsantili-Kakoulidou, A. Multi-objective optimization methods in novel drug design. Expert Opin Drug Discov 2021, 16, 647–658. [Google Scholar] [CrossRef]
- Waibel, I.; Schneider, T.N.; Fischer, F.J.; Dumnoenchanvanit, P.; Kulakova, A.; Nguyen, T.D.; Egebjerg, T.; Bertelsen, S.; Lorenzen, N.; Arosio, P. Bayesian Optimization for Efficient Multiobjective Formulation Development of Biologics. Mol Pharm 2025, 22, 6636–6645. [Google Scholar] [CrossRef]
- Li, L.; Back, S.I.; Ma, J.; Guo, Y.; Galeandro-Diamant, T.; Clénet, D. Bayesian optimization and machine learning for vaccine formulation development. PLoS One 2025, 20, e0324205. [Google Scholar] [CrossRef]
- Luukkonen, S.; van den Maagdenberg, H.W.; Emmerich, M.T.M.; van Westen, G.J.P. Artificial intelligence in multi-objective drug design. Curr Opin Struct Biol 2023, 79, 102537. [Google Scholar] [CrossRef]
- Wickramasinghe, C.D.; Kim, S.; Li, J. SpatialCNS-PBPK: An R/Shiny Web-Based Application for Physiologically Based Pharmacokinetic Modeling of Spatial Pharmacokinetics in the Human Central Nervous System and Brain Tumors. CPT Pharmacometrics Syst Pharmacol 2025, 14, 864–880. [Google Scholar] [CrossRef]
- Bowman, C.; Ma, F.; Mao, J.; Plise, E.; Chen, E.; Liu, L.; Zhang, S.; Chen, Y. Evaluation of bottom-up modeling of the blood-brain barrier to improve brain penetration prediction via physiologically based pharmacokinetic modeling. Biopharm Drug Dispos 2023, 44, 60–70. [Google Scholar] [CrossRef]
- Tregub, P.P.; Bystrov, D.A.; Kushnir, I.A.; Korsakova, S.A.; Yurchenko, S.O.; Salmina, A.B. Blood-brain barriers and drug pharmacokinetics: mechanisms and models. Eur J Pharmacol 2025, 1003, 177872. [Google Scholar] [CrossRef]
- Linville, R.M.; DeStefano, J.G.; Sklar, M.B.; Xu, Z.; Farrell, A.M.; Bogorad, M.I.; Chu, C.; Walczak, P.; Cheng, L.; Mahairaki, V.; et al. Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 2019, 190-191, 24–37. [Google Scholar] [CrossRef]
- Canfield, S.G.; Stebbins, M.J.; Faubion, M.G.; Gastfriend, B.D.; Palecek, S.P.; Shusta, E.V. An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. Fluids Barriers CNS 2019, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, L.; Vermond, S.; Hill, S.; de Munnik, S.; van Puijvelde, G.; Quist, B.; Pooley, R.; Carr, K.; Brown, N.; Aspinall-O'Dea, M. Abstract LB009: Safety profile assessment for IND-enabling studies: Bispecific antibodies and antibody-drug conjugates (ADCs). Cancer Research 2025, 85, LB009–LB009. [Google Scholar] [CrossRef]
- Youssef, E.; Weddle, K.; Zimmerman, L.; Palmer, D. Pharmacovigilance in Cell and Gene Therapy: Evolving Challenges in Risk Management and Long-Term Follow-Up. Drug Saf 2026, 49, 27–53. [Google Scholar] [CrossRef] [PubMed]
- Glader, C.; Jeitler, R.; Wang, Y.; van Tuijn, R.; Grau-Carbonell, A.; Tetyczka, C.; Mesite, S.; Caisse, P.; Khinast, J.; Roblegg, E. Process Analytical Strategies for Size Monitoring: Offline, At-Line, Online, and Inline Methods in a Top-Down Nano-Manufacturing Line. Pharmaceutics 2025, 17. [Google Scholar] [CrossRef]
- Adaptive platform trials: definition, design, conduct and reporting considerations. Nat Rev Drug Discov 2019, 18, 797–807. [CrossRef]
- Narsinh, K.H.; Perez, E.; Haddad, A.F.; Young, J.S.; Savastano, L.; Villanueva-Meyer, J.E.; Winkler, E.; de Groot, J. Strategies to Improve Drug Delivery Across the Blood-Brain Barrier for Glioblastoma. Curr Neurol Neurosci Rep 2024, 24, 123–139. [Google Scholar] [CrossRef]
- Zhu, M.; Zhuang, J.; Li, Z.; Liu, Q.; Zhao, R.; Gao, Z.; Midgley, A.C.; Qi, T.; Tian, J.; Zhang, Z.; et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat Nanotechnol 2023, 18, 657–666. [Google Scholar] [CrossRef]
- Pan, F.; Xia, Y.; Zhang, B.; Mohammed, A.; Zhao, X. Microfluidic Fabrication of Peptide-Functionalized Poly(lactic-co-glycolic acid) Nanoparticles for Targeted Curcumin Delivery in Breast Cancer. Langmuir 2025, 41, 19514–19525. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.H.; Seo, H.; Lee, H.J.; Kim, G.; Nie, C.; Hong, Y.; Yoon, Y.J.; Lim, J.Y.; Park, S.J.; et al. Microfluidic Generation of Exosome-Mimetic Nanoparticles for Scalable Production and Enhanced Therapeutic Efficacy. Small 2025, 21, e06162. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Wang, W.; Che, W.; Xu, Y.; Jin, C.; Dong, L.; Xia, Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025, 15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kohane, D.S. External triggering and triggered targeting strategies for drug delivery. Nature Reviews Materials 2017, 2, 1–14. [Google Scholar] [CrossRef]
- Sanadgol, N.; Abedi, M.; Hashemzaei, M.; Kamran, Z.; Khalseh, R.; Beyer, C.; Voelz, C. Exosomes as nanocarriers for brain-targeted delivery of therapeutic nucleic acids: advances and challenges. J Nanobiotechnology 2025, 23, 453. [Google Scholar] [CrossRef]
- Schreiner, T.G.; Menéndez-González, M.; Schreiner, O.D.; Ciobanu, R.C. Intrathecal Therapies for Neurodegenerative Diseases: A Review of Current Approaches and the Urgent Need for Advanced Delivery Systems. Biomedicines 2025, 13. [Google Scholar] [CrossRef]
- Sebghatollahi, Z.; Yogesh, R.; Mahato, N.; Kumar, V.; Mohanta, Y.K.; Baek, K.H.; Mishra, A.K. Signaling Pathways in Oxidative Stress-Induced Neurodegenerative Diseases: A Review of Phytochemical Therapeutic Interventions. Antioxidants (Basel) 2025, 14. [Google Scholar] [CrossRef]
- Mehta, R.S.; Kochar, B.D.; Kennelty, K.; Ernst, M.E.; Chan, A.T. Emerging approaches to polypharmacy among older adults. Nat Aging 2021, 1, 347–356. [Google Scholar] [CrossRef]
- de Koning, L.A.; Vazquez-Matias, D.A.; Beaino, W.; Vugts, D.J.; van Dongen, G.; van der Flier, W.M.; Ries, M.; van Vuurden, D.G.; Vijverberg, E.G.B.; van de Giessen, E. Drug delivery strategies to cross the blood-brain barrier in Alzheimer's disease: a comprehensive review on three promising strategies. J Prev Alzheimers Dis 2025, 12, 100204. [Google Scholar] [CrossRef]
- Vargas, R.; Martinez-Martinez, N.; Lizano-Barrantes, C.; Pacheco-Molina, J.A.; García-Montoya, E.; Pérez-Lozano, P.; Suñé-Negre, J.M.; Suñé, C.; Suñé-Pou, M. Advancing through the blood-brain barrier: mechanisms, challenges and drug delivery strategies. Admet dmpk 2025, 13, 2988. [Google Scholar] [CrossRef]
- Durham, P.G.; Butnariu, A.; Alghorazi, R.; Pinton, G.; Krishna, V.; Dayton, P.A. Current clinical investigations of focused ultrasound blood-brain barrier disruption: A review. Neurotherapeutics 2024, 21, e00352. [Google Scholar] [CrossRef]



| Pathway | Molecular prerequisites | Exemplars | Impact on phytochemicals | Engineering lever(s) | References |
|---|---|---|---|---|---|
| Paracellular diffusion (tight junction limited) | Effectively negligible at an intact BBB; requires transient junction loosening or pathological leak | Small hydrophiles in disease-associated leak states | Native polyphenols remain largely excluded; leak is disease- and region-dependent and poorly controllable | Localized opening approaches (e.g., focused ultrasound with microbubbles); avoid programs that depend on nonspecific leak | [62,63,64] |
| Transcellular passive diffusion | Small size, low polarity, limited H-bonding; favorable lipophilicity; minimal efflux liability | CNS-permeable small molecules; selected alkaloids | Many phytochemicals exceed polarity and H-bonding windows; metabolism and efflux can negate apparent permeability | Prodrug or soft-drug design; tune logD and polar surface area; stabilize against first-pass metabolism; solubility enabling formulations | [65,66,67] |
| Carrier-mediated transport (CMT) | Structural mimicry of endogenous nutrients; transporter affinity plus adequate chemical stability | GLUT1 (glucose), LAT1 (large neutral amino acids), MCTs (monocarboxylates) | Provides an influx handle for polar phytochemicals, but competition with endogenous substrates and species differences can limit delivery | Transporter-hijacking prodrugs (amino acid, glucose, monocarboxylate promoieties); Km/Vmax-aware design; brain-selective cleavage | [68,69,70] |
| Receptor-mediated transcytosis (RMT) | Ligand engagement within a productive affinity window; excessive avidity increases sequestration and lysosomal routing | Transferrin receptor, insulin receptor, LRP1 (targeting designs) | Enables macromolecular and nanoparticle shuttling, but ligand density and valency control release into brain parenchyma | Ligand-decorated nanocarriers; optimize affinity and ligand density; cleavable linkers; designs that favor recycling over degradation | [53,71,72] |
| Adsorptive-mediated transcytosis and CPP uptake | Net positive charge and/or CPP motifs; electrostatic interactions with endothelial glycocalyx | Tat, penetratin, RVG-derived peptides (as CPP/targeting motifs) | High uptake can trade specificity for off-target accumulation and cytotoxicity; "more cationic" is not always better | Charge-switchable coatings; stimulus-unmasking CPPs; cap surface charge; combine with targeting ligands to improve selectivity | [53,67,71] |
| Active efflux (ABC transporters) | Substrate recognition by ATP-driven pumps; efflux can dominate even when passive permeability is favorable | P-gp, BCRP, MRPs | A key barrier for many polyphenols; inhibition or induction can shift CNS exposure unpredictably across age, disease, and comedication | Efflux-evading prodrugs; corona control and stealth coatings; carrier strategies that reduce free substrate at the luminal membrane; early efflux liability screening | [65,66,67] |
| Class | Representative compounds | Primary liabilities | Preferred enabling strategy | Notes (e.g., stability, taste, ionization) | References |
|---|---|---|---|---|---|
| Polyphenols (flavonoids, stilbenes, curcuminoids) | Resveratrol; quercetin; curcumin | Low brain exposure despite in vitro potency; extensive phase II metabolism (UGT/SULT); efflux liability (P-gp/BCRP); often high polarity or poor solubility; chemical instability (oxidation or hydrolysis). | Prodrug or transporter-hijacking promoieties; nanoencapsulation (polymeric NPs, liposomes, SLNs) to protect the scaffold and modulate release; intranasal or BBB opening adjuncts when justified. | Phenolic acids are weak acids with context-dependent ionization; many are light and pH sensitive; bitter or astringent taste can limit oral dosing and adherence. | [149,150,151] |
| Alkaloids | Berberine; galantamine | Ionization and strong transporter interactions can cap CNS entry; variable oral bioavailability; efflux driven exposure variability; class dependent safety margins and CYP interactions. | Salt selection plus lipid-based carriers or polymeric micelles; efflux bypass via prodrug or nanocarrier shielding; leverage high target potency with lower systemic exposure through controlled release or alternative routes. | Often strongly bitter; typical basic pKa yields cationic fraction at physiological pH; galantamine illustrates that pharmacodynamic targeting can partly offset limited brain partitioning. | [110,116,149] |
| Terpenoids (mono-, sesqui-, diterpenes) | Ginkgolides; pinene; linalool | High lipophilicity with low aqueous solubility; volatility for some monoterpenes; oxidative degradation; high protein binding and rapid metabolism leading to variable CNS exposure. | Self-emulsifying systems, nanoemulsions, cyclodextrin inclusion, or lipid nanoparticles to raise apparent solubility and stabilize the payload; intranasal formulations for rapid onset when appropriate. | Usually neutral with limited ionization; aroma and taste are prominent; irritation potential should be checked for concentrated essential-oil-like components. | [149,151,152] |
| Cannabinoids | Cannabidiol (CBD); THC | Formulation-limited absorption and marked individual variability; extensive hepatic metabolism; drug-drug interactions; psychoactivity and regulatory constraints for THC; long tissue residence due to lipophilicity. | Lipid vehicles, nanoemulsions, polymeric carriers, or controlled release depots; route optimization (oromucosal, intranasal) and dose fractionation to reduce peak related adverse effects while maintaining exposure. | Light and oxygen sensitive; taste can be limiting; largely neutral but highly lipophilic; legal status and labeling requirements can shape trial design. | [153,154,155] |
| Platform | Core/shell materials | Size/PDI | Surface (PEG/ligand) | Loading | Release trigger | Pros/Cons | Exemplar payloads | Notes (CMC/GMP) | References |
|---|---|---|---|---|---|---|---|---|---|
| Polymeric nanoparticles (PLGA, PEG-PLGA; chitosan-coated/hybrids) | PLGA or PEG-PLGA matrix; optional chitosan coating or chitosan microparticle embedding | Tunable; low PDI targeted as a core CQA | PEG “stealth”; Angiopep-2 and other RMT ligands; corona-engineering approaches | Encapsulation of hydrophobic phytocompounds; co-loading feasible; drug protected from metabolism | Diffusion + polymer erosion; can add pH/redox/enzyme-responsive elements | Pros: biodegradable, sustained release, strong stability. Cons: MPS uptake; burst-release risk if not tuned; process sensitivity | Resveratrol; curcumin; flavonoids; intranasal chitosan–PLGA example: gemcitabine | QbD/QTPP with CQAs (size, PDI, zeta potential, encapsulation efficiency, release kinetics); sterility/endotoxin control; scale-up reproducibility | [61,220,226] |
| Liposomes (including PEGylated and ligand-decorated) | Phospholipid bilayer ± cholesterol; aqueous core + hydrophobic bilayer domain | Tunable; control needed to limit leakage and maintain uniformity | PEGylation for circulation; modular ligand functionalization for BBB targeting | Hydrophilic cargo in core; hydrophobic in bilayer; co-encapsulation possible | Constitutive leakage/partitioning; can be engineered for thermosensitive or pH-triggered release | Pros: versatile loading; rapid brain access in some models. Cons: leakage and reduced retention; stability/shelf-life constraints | Resveratrol; curcumin; peptide cargos (as discussed in platform comparisons) | Composition and lipid raw-material controls; filtration-compatible sterility where feasible; stability/lyophilization programs to preserve CQAs | [221,222,227] |
| Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) | SLN: solid lipid matrix. NLC: mixed solid + liquid lipids to increase drug accommodation | Typically robust colloids when optimized; low PDI targeted as a translation enabler | Surfactant-stabilized; PEG and BBB ligands can be incorporated as needed | Best for lipophilic phytochemicals; NLCs improve loading vs SLNs | Diffusion from lipid matrix; matrix reorganization influences kinetics | Pros: biocompatible, controlled release, improved stability. Cons: SLNs limited loading; storage-driven drug expulsion risk reduced in NLCs | Polyphenols; terpenoids; chronic neurodegeneration-oriented formulations | Control lipid polymorphism, surfactant system, and storage conditions; monitor size/PDI, encapsulation efficiency, leakage/expulsion during stability testing | [228,229,230] |
| Nanoemulsions / nanoemulgels (often intranasal) | Oil-in-water droplets with surfactants/co-surfactants; optional mucoadhesive gel phase | Small droplet size emphasized for uptake; distribution width is a key CQA | Mucoadhesive polymers (e.g., chitosan coatings) possible; ligand targeting less common than for NPs | Solubilization of hydrophobic polyphenols and terpenoids; formulation-driven payload stabilization | Rapid absorption via olfactory epithelium; residence-time extension via in situ gels (thermo/ion-responsive) | Pros: fast nose-to-brain access; bypass first-pass metabolism. Cons: manufacturing reproducibility and aggregation/shelf-life challenges | Curcumin; resveratrol; terpenoids; cannabinoid-class examples referenced under lipid vehicles | CMC focuses on droplet-size distribution, rheology (for gels), spray plume/metered dosing, preservative compatibility, and long-term stability | [227,231,232] |
| Dendrimers (e.g., PAMAM, carbosilane) | Monodisperse branched polymers; generation-defined architecture; optional PEGylation/mixed surfaces | Defined by generation; surface charge is a dominant performance/safety dial | Multivalent ligand attachment (RMT or disease-homing); PEG/mixed-surface designs to reduce toxicity | Internal cavity encapsulation and/or covalent conjugation; suitable for peptides and nucleic acids | Cleavable linkers (pH/redox/enzyme) for conjugates; diffusion for encapsulated small molecules | Pros: programmable multivalency and targeting density. Cons: cationic toxicity risk and clearance trade-offs with high functionalization | Peptide cargos; nucleic acids (siRNA-class examples) | Tight control of generation, residual monomers/solvents, surface substitution ratio; sterility/endotoxin; charge-related immunotoxicity screening | [223,224,225] |
| Polymeric micelles | Amphiphilic block copolymers that self-assemble (hydrophobic core + hydrophilic corona) | Nanosized aggregates; stability to dilution is a critical attribute | PEG corona common; charge tuning (including cation-free designs) to reduce cytotoxicity | Solubilizes poorly water-soluble phytochemicals; can carry nucleic acids with tailored chemistry | Physiologic triggers (acidic pH, enzymes) that destabilize micelles and release cargo | Pros: strong solubilization; triggerable release. Cons: disassembly risk in vivo; formulation sensitivity to concentration and serum interactions | Hydrophobic phytochemicals; siRNA delivery examples discussed in glioblastoma context | Define CMC/CQA set including size/PDI, critical micelle concentration, loading, and release; assess serum stability and storage (lyophilization) effects | [220,224,225] |
| Inorganic/carbon nanostructures (carbon dots/quantum dots; magnetic cores) | Carbon dots or quantum-dot-like cores; magnetic nanoparticles; polymer/PEG coatings for biocompatibility | Engineered nanoscale; surface chemistry dominates biodistribution and clearance | Functional coatings (polymer/PEG) and ligands for targeting; magnetic guidance as an external control layer | Conjugation/adsorption of small molecules; intrinsic imaging signal enables theranostics | External triggers (magnetic fields/light) and surface chemistry-dependent release | Pros: tracking + delivery; controllable guidance. Cons: long-term safety/retention uncertainty; oxidation and accumulation concerns | Theranostic small molecules; imaging-enabled CNS delivery constructs | Extended toxicology and clearance characterization; strict control of surface chemistry and impurities; justification of long-term tissue persistence risk | [218,219,226] |
| Hybrid/biomimetic systems and corona-controlled designs | Polymer–lipid hybrids; inorganic–organic hybrids; membrane-coated nanoparticles; polymalic acid nanodrugs | Tunable; multi-component systems amplify sensitivity to process drift | Dual-targeting (e.g., Angiopep-2 + CPP/TAT); corona engineering via pre-coating or biomimetic shells | Multi-cargo capability; can integrate prodrug chemistry with carrier features | Layered control: diffusion/erosion plus internal (pH/redox/enzyme) or external (ultrasound/light) triggers | Pros: integrates stability, targeting, and triggerable release. Cons: CMC complexity; regulatory ambiguity for multifunctional hybrids | Angiopep-2-conjugated nanodrug examples; dual-ligand lipid nanocarriers in glioblastoma models | PAT-enabled monitoring; tight incoming material specs; control strategy for surface functionalization and corona; batch-to-batch fidelity prioritized | [218,233,234] |
| Biogenic vesicles (mammalian exosomes; plant-derived EVs; synthetic mimetics) | Natural EV lipid bilayers (mammalian or plant-derived) or synthetic mimetics (polymersomes/membrane-coated NPs) | Often heterogeneous; purity and population definition are key | Innate tropism plus optional ligand decoration; mimetics allow controlled ligand presentation | Electroporation/incubation/sonication/extrusion for small molecules, proteins, and nucleic acids; PDEVs may carry intrinsic bioactives | Cellular uptake/endosomal trafficking; release depends on uptake and intracellular routing | Pros: high biocompatibility; potential tropism; PDEVs are abundant and low immunogenic. Cons: batch variability, yield/purification and regulatory classification; BBB mechanisms for PDEVs less defined | Small molecules, proteins, nucleic acids; antioxidant/anti-inflammatory cargos in neuroinflammation models | Standardize source, isolation, and potency assays; define acceptable heterogeneity; scale-up and regulatory pathway planning are decisive | [219,225,235] |
| Ligand/target | K_d range | Valency | Species caveats | Δ brain exposure (fold) | Notes | References |
|---|---|---|---|---|---|---|
| Transferrin (Tf) → TfR | NR in manuscript; productive “sweet spot” emphasized (avoid very high avidity) | Mono- to multivalent (ligand density-dependent) | Endogenous Tf competition; receptor expression varies by region/disease; rodent–human differences | NR; enter as fold vs non-targeted control (specify metric: AUC, K_p,brain, K_p,uu) | Canonical BBB shuttle; format and density govern recycling vs lysosomal routing; can be paired with parenchymal motifs | [276,277] |
| Anti-TfR antibodies / fragments / bispecific shuttles → TfR | NR in manuscript; affinity and epitope selection critical | Often monovalent/low-avidity formats preferred; bispecific designs common | Epitope-specific species cross-reactivity; high affinity can increase trapping; saturation effects | NR; report with dosing window and comparator | Design goal is efficient transcytosis with minimal TfR downregulation and reduced endothelial retention | [278,279,280] |
| Angiopep-2 → LRP1 | NR in manuscript; ligand density and avidity tuning highlighted | Typically multivalent on nanocarriers; density optimized to avoid sequestration | LRP1 expression/context dependence; human relevance must be confirmed; tumor vs healthy BBB differences | NR; report relative to non-targeted carrier | Widely used peptide shuttle for nanoparticles and conjugates; can support glioblastoma-directed constructs | [281,282,283] |
| ApoE-mimetic peptides → LDLR (±LRP1) | NR in manuscript; affinity window and release kinetics emphasized | Mono- or multivalent; avidity increases uptake but can increase trapping | Strong endogenous ApoE/LDL competition; lipid-state effects; species differences in lipoprotein biology | NR; specify endpoint (brain/plasma ratio, AUC) | Leverages lipoprotein trafficking; cleavable linkers and controlled valency can aid parenchymal release | [284,285] |
| Insulin / engineered IR ligands / anti-IR formats → IR | NR in manuscript; avoid receptor saturation | Low-avidity designs generally favored | Physiological ceiling and safety constraints (glucose homeostasis); high endogenous competition; species differences | NR; report alongside safety/tolerability | Attractive but constrained by homeostatic receptor function; format and dosing are decisive | [240] |
| Aptamers / alternative binders (e.g., TfR- or LRP1-binding) → RMT receptors | NR in manuscript; receptor-specific values to be inserted | Usually monovalent; multimerization possible | Cross-reactivity and epitope mapping required; stability in plasma and nuclease resistance differ by species | NR; populate with harmonized assay definitions | Modular alternatives to peptides/antibodies; can reduce immunogenicity but require robust CMC characterization | [276,286] |
| Modality | Mechanism | Evidence level | Clinical status | Advantages | Risks/mitigations | References |
|---|---|---|---|---|---|---|
| Intranasal nose-to-brain (sprays, gels, nanoemulsions) | Direct transport along olfactory and trigeminal pathways; reduced first-pass metabolism; mucoadhesion prolongs residence | Preclinical strong; early clinical emerging (context-dependent) | Used clinically for some CNS-active small molecules; delivery platforms under evaluation for neurodegeneration/oncology | Noninvasive; rapid onset potential; bypasses systemic dilution for suitable payloads; compatible with solubility-enabling formulations | High inter-individual variability (anatomy, mucociliary clearance); limited dose volume; nasal irritation—mitigate with device optimization, deposition mapping, mucoadhesive/in situ gels, and PK endpoints (AUC, Kp,uu when feasible) | [4,155,329] |
| Focused ultrasound (FUS) + microbubbles | Pulsed acoustic exposure drives stable cavitation–mediated mechanoporation and transient tight-junction/transport changes enabling local BBB opening | Robust preclinical; multiple early clinical studies | Clinical translation under way (MRI-guided protocols in neuro-oncology and neurodegeneration) | Spatially targeted, reversible opening; compatible with diverse payloads (small molecules, prodrugs, nanocarriers, biologics); enables region-specific dosing | Hemorrhage/edema risk with inertial cavitation; off-target opening—mitigate via cavitation monitoring (acoustic emissions/PCD), conservative parameter sets, MRI guidance, contrast-enhanced confirmation, and predefined abort thresholds | [148,330,331] |
| Osmotic BBB disruption (intra-arterial mannitol) | Hyperosmolar shrinkage of endothelial cells transiently widens tight junctions and increases permeability | Established concept; variable evidence by indication and protocol | Applied in select centers/indications; invasive and less commonly used than device-guided opening | Can increase delivery of otherwise excluded agents; compatible with intra-arterial co-administration | Poor spatial control; seizure/edema/hemorrhage risk; procedure-related risks—mitigate with stringent patient selection, hemodynamic monitoring, imaging surveillance, and avoidance of programs relying on nonspecific leak | [148,330,332] |
| Chemical permeability modulation (selected permeabilizers/co-solvents) | Transiently alters membrane integrity, tight-junction signaling, or transporter function to raise permeability | Limited to mixed; often preclinical or adjunctive | Not routine for broad CNS delivery; used cautiously as adjuncts in narrow settings | Potentially simple to implement; can be paired with systemic dosing when local devices are unavailable | Nonspecific barrier disruption and systemic toxicity; unpredictable PK and inflammation—mitigate with minimal-effective exposure, local delivery where possible, tight safety biomarkers, and preference for controllable modalities | [148,332,333] |
| Convection-enhanced delivery (CED) | Pressure-driven interstitial infusion via intracranial catheter achieves high local concentrations independent of BBB transport | Strong preclinical/clinical experience in focal indications | Clinical use and trials in neuro-oncology and focal CNS targets; procedure-dependent | High local dose; bypasses efflux and systemic barriers; controllable infusion profiles; suitable for macromolecules and particles | Invasive; catheter placement errors, reflux/backflow, heterogeneous distribution, infection—mitigate with image-guided planning, real-time distribution tracking, optimized cannula design, and sterility controls | [326,334,335] |
| External-field targeting/triggering (magnetic guidance; remote release) | Magnetic gradients concentrate magnetically responsive carriers; external fields can trigger release from stimuli-responsive constructs | Primarily preclinical; exploratory translation | Investigational; requires specialized hardware and long-term safety data | Adds spatiotemporal control without barrier-wide opening; can pair with imaging-enabled carriers for tracking | Uncertain long-term retention/clearance; heating and off-target accumulation; device standardization gaps—mitigate with biocompatible coatings, rigorous dosimetry, biodistribution/clearance studies, and conservative escalation | [4,148] |
| Transporter | Promoiety/linker | Cleavage trigger | Exposure gain | Off-target risks | Notes | References |
|---|---|---|---|---|---|---|
| LAT1 (large neutral amino acid transporter) | L-amino acid promoieties (e.g., phenylalanine/leucine/tyrosine analogs); ester, amide, or carbamate linkers; optional self-immolative spacers | Brain-enriched esterases/peptidases; linker-enabled self-immolation after enzymatic trigger | NR (populate with fold-change in brain AUC, Kp,brain or Kp,uu) | Competition with endogenous amino acids; saturation at high dose; peripheral uptake (gut, kidney); rodent–human affinity/epitope differences | Prefer moderate affinity to favor flux over trapping; design should be Km/Vmax-aware; verify brain-selective cleavage and low systemic conversion; include efflux liability screening for released parent | [380,381,382] |
| GLUT1 (glucose transporter) | Glucose or glucosyl-like promoieties; O- or C-linked glycosides; carbonate/carbamate/ester linkers for release | Glycosidase-assisted unmasking (where applicable) and/or esterase-triggered cleavage of linkers; self-immolative release modules | NR (report with matched control and dosing window) | High peripheral distribution (erythrocytes/endothelium); competition with glucose; risk of rapid systemic cleavage; potential metabolic liabilities | Aim for productive transport without excessive binding; validate stability in plasma and nasal/intestinal matrices; monitor impact on glucose handling only where pharmacologically plausible | [380,383,384] |
| MCT1 (monocarboxylate transporter) | Monocarboxylate promoieties (e.g., lactate/pyruvate/acetate-like); ester linkers; soft-drug variants to tune logD | Carboxylesterase-mediated cleavage; pH/enzyme-sensitive linkers can bias release toward brain compartments | NR (capture as fold-change in brain exposure and unbound fraction when available) | Peripheral uptake (muscle, liver); competition with endogenous monocarboxylates; acidosis-related confounding in sensitive settings; species differences in transporter expression | Useful for polar acids/phenolics; quantify competition effects under physiological substrate levels; include brain-selective cleavage validation and metabolite profiling | [385,386,387] |
| Multiple SLCs (exploratory / case-by-case) | Nutrient-mimetic fragments matched to a selected transporter’s substrate space; modular linkers (esters/amides/carbamates) | Enzyme-labile trigger + self-immolative release (design-dependent) | NR (insert when transporter, affinity, and PK endpoints are specified) | Uncertain selectivity; off-target tissue uptake; unpredictable metabolism; model-to-human translation risk | Use only with strong transporter evidence (expression at BBB + uptake assays); pair with orthogonal confirmation (inhibitors/knockdown, saturability, competitive substrates) | [380,388,389] |
| Efflux-evading (non-transporter-hijacking) prodrugs | Mask H-bond donors/acceptors; increase logD modestly; promoieties that reduce recognition by P-gp/BCRP; soft-drug linkers | Systemic or brain esterases (must be tuned to avoid premature conversion) | NR (report brain exposure and safety vs parent) | Premature systemic activation; altered distribution and toxicity; active metabolite formation; drug–drug interactions | Useful when influx carriers are not practical; requires early efflux screening (P-gp/BCRP) and rigorous metabolite ID; prioritize Kp,uu as decision endpoint | [389,390,391] |
| Model | Throughput | What it predicts | Key artifacts | Best-fit decision | References |
|---|---|---|---|---|---|
| Transwell BBB (endothelial mono-/co-culture; static TEER/permeability) | High | Relative permeability and gross barrier integrity; early ranking of formulations/prodrugs; qualitative efflux effects (context-dependent) | Static conditions; nonphysiologic shear; variable tight junction maturation; transporter expression drift; adsorption to plastics | Early screen and rank-order; eliminate non-starters before costly models | [473,474,475] |
| iPSC-derived BBB endothelium (Transwell) | Medium | More human-relevant tight junctions/transporters; better prediction of human-like permeability windows | Differentiation variability; batch effects; incomplete neurovascular unit (NVU) signaling unless co-cultured | Mid-stage confirmation of BBB-relevant transport and efflux liability | [476,477,478] |
| iPSC BBB organoids / spheroids (NVU-like) | Medium–low | 3D cell–cell interactions, uptake and penetration trends; neuroinflammation-compatible testing | Size heterogeneity; diffusion limits; limited perfusion; measurement standardization gaps | Mechanism prioritization and safety/uptake profiling; compare targeting vs non-targeting designs | [479,480,481] |
| Microfluidic BBB-on-chip (flow/shear; NVU co-culture) | Low–medium | Dynamic barrier responses under flow; transporter-mediated flux; inflammation-dependent permeability shifts | Device-to-device variability; bubble/absorption effects; complex operation; limited throughput | Late preclinical de-risking for mechanism and context dependence (inflammation, disease cues) | [482,483,484] |
| Rodent in vivo PK (brain + plasma; brain/plasma ratios) | Medium | System-level exposure, metabolism, distribution; initial signal of CNS delivery improvement | Species differences in BBB properties and transporters; confounding by vascular space and binding; anesthesia effects | Go/no-go based on integrated exposure; prioritize candidates for quantitative endpoints (Kp,uu) | [473,477,485] |
| Rodent microdialysis (ISF sampling) | Low | Unbound interstitial exposure and time-course; closest preclinical readout to target-site pharmacology | Invasive; recovery calibration; regional restriction; limited to specialized setups | Decision-grade confirmation of CNS penetration (Kp,uu-like inference) and PK/PD linkage | [473,477,485] |
| CSF sampling (preclinical/clinical) | Medium | Surrogate exposure trends when ISF is unavailable; supports translational sampling designs | CSF ≠ ISF; compartmental delays; protein binding differences; disease-state confounding | Clinical feasibility planning; supportive evidence alongside imaging or modeling | [473,477,485] |
| PET imaging (labeled payload or marker) | Low | Whole-brain/spatial distribution; target engagement surrogates; longitudinal kinetics in vivo | Radiolabel alters properties; metabolite signal; resolution limits; tracer-specific assumptions | Translation-facing biodistribution and engagement readouts; de-risk regional delivery claims | [478,486,487] |
| Non-human primate (NHP) studies | Very low | Closest approximation to human BBB transport and PK; de-risks scale and delivery paradigm | Cost/ethics; small n; limited disease modeling; procedural constraints | Preclinical-to-clinical bridge for top candidates and delivery devices/targeting ligands | [473,477,485] |
| Mechanistic PBPK / BBB models (incl. efflux and binding) | High (in silico) | Scenario testing; dose-to-exposure translation; integrates binding, efflux, and tissue partitioning | Parameter uncertainty; requires high-quality input data; model misspecification risk | Study design, endpoint selection, and translation planning; interpret CSF/ISF and imaging outputs | [473,477,485] |
| Indication | Modality | Phase | Primary endpoint | Exposure evidence | Status | References |
|---|---|---|---|---|---|---|
| Neurodegeneration (Alzheimer’s / Parkinson’s) | Focused ultrasound (FUS) + microbubbles | Phase I (as noted in manuscript) | Safety/tolerability; imaging-confirmed BBB opening | MRI guidance + contrast-enhanced confirmation; BBB resealing within hours (NR details) | Early clinical translation under way | [296,525,526] |
| Glioblastoma / focal CNS tumors | RMT-targeted nanocarriers (e.g., TfR/LRP1 ligands; Angiopep-2-type designs) | Preclinical → early clinical (NR) | Tumor response / progression metrics (NR) | Biodistribution/brain uptake signals; comparator vs non-targeted carrier (NR) | Investigational; target/format-dependent | [215,527,528] |
| Glioblastoma / focal CNS tumors | Convection-enhanced delivery (CED) | Clinical use/trials (NR) | Local control and safety (procedure-specific) | High local concentration by direct interstitial infusion; distribution tracking (NR) | Procedure-dependent; used in specialized settings | [324,325,529] |
| Depression / neuropsychiatric disorders | Intranasal nose-to-brain formulations (sprays, gels, nanoemulsions) | Preclinical → early clinical signals (NR) | Symptom scales and tolerability (NR) | PK/PD signals; CSF or surrogate exposure where available (NR) | Emerging; high variability and formulation-sensitive | [329,530,531] |
| Broad CNS indications (adjunct permeability strategies) | Osmotic BBB disruption (intra-arterial mannitol) | Selective clinical application (NR) | Feasibility/safety; delivery enhancement (NR) | Increased permeability by protocol; exposure quantification variable (NR) | Invasive; limited use due to safety/control trade-offs | [321,532,533] |
| Exploratory / device-enabled targeting | External-field targeting/triggering (magnetic guidance; remote release) | Preclinical | Proof-of-concept delivery and safety | Tracking-enabled carriers; biodistribution and clearance studies (NR) | Exploratory; hardware and long-term safety gaps | [296,534,535] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
