Submitted:
28 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results and Discussion
2.1. Molecular Characterization of CIGB300 Peptide Aggregation by UV-Vis Absorption, and Fluorescence Spectroscopy and Circular Dichroism
2.2. CIGB300 Affects the Cell Viability and Migration of CAL 27 Cancer Cell Line in 2D Cultures
2.3. CAL 27 Tumoroids Production
2.4. Effects of CIGB300 Peptide on the Cell Viability of CAL27PSF Tumoroids in Dependence on the Stiffness
2.5. Diffusion Studies of the CIGB300 in SF Hydrogels by Fluorescence Spectroscopy
2.6. The Tumoroid Stiffness Affects the Drug Resistance of the CAL 27 Cancer Cells
3. Materials and Methods
3.1. Molecular Studies
3.1.1. Fluorescence Spectroscopy
3.1.2. Circular Dichroism of CIGB300 Peptide
3.2. Rheological Analyses of the Hydrogels
3.3. Cellular Studies
3.3.1. Cell Culture Systems Production and Cell Viability Assay
3.3.2. Immunofluorescence Microscopy Analyses
3.3.3. Scratch Wound Healing Assay
3.3.4. Protein Expression by Western Blot Analysis
3.3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaupel, P. Tumor Microenvironmental Physiology and Its Implications for Radiation Oncology. Seminars in Radiation Oncology 2004, 14, 198–206. [Google Scholar] [CrossRef]
- Law, A.M.K.; Rodriguez de la Fuente, L.; Grundy, T.J.; Fang, G.; Valdes-Mora, F.; Gallego-Ortega, D. Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, J.; Srivastava, T.P.; Sahoo, O.S.; Karmakar, A.; Rai, A.K.; Sarma, A.; Gogoi, G.; Alqahtani, M.S.; Abbas, M.; Dhar, R.; et al. Cancer Stem Cells: Signaling Pathways and Therapeutic Targeting. MedComm – Oncology 2023, 2, e62. [Google Scholar] [CrossRef]
- Buonvino, S.; Arciero, I.; Martinelli, E.; Seliktar, D.; Melino, S. Modelling the Disease: H2S-Sensitivity and Drug-Resistance of Triple Negative Breast Cancer Cells Can Be Modulated by Embedding in Isotropic Micro-Environment. Materials Today Bio 2023, 23, 100862. [Google Scholar] [CrossRef]
- Buonvino, S.; Di Giuseppe, D.; Filippi, J.; Martinelli, E.; Seliktar, D.; Melino, S. 3D Cell Migration Chip (3DCM-Chip): A New Tool toward the Modeling of 3D Cellular Complex Systems. Advanced Healthcare Materials n/a 2024, 2400040. [Google Scholar] [CrossRef] [PubMed]
- Ivascu, A.; Kubbies, M. Rapid Generation of Single-Tumor Spheroids for High-Throughput Cell Function and Toxicity Analysis. SLAS Discovery 2006, 11, 922–932. [Google Scholar] [CrossRef]
- Stein, A.M.; Nowicki, M.O.; Demuth, T.; Berens, M.E.; Lawler, S.E.; Chiocca, E.A.; Sander, L.M. Estimating the Cell Density and Invasive Radius of Three-Dimensional Glioblastoma Tumor Spheroids Grown in Vitro. Applied Optics 2007, 46, 5110–5118. [Google Scholar] [CrossRef] [PubMed]
- Chatzinikolaidou, M. Cell Spheroids: The New Frontiers in in Vitro Models for Cancer Drug Validation. Drug Discovery Today 2016, 21, 1553–1560. [Google Scholar] [CrossRef]
- Buonvino, S.; Ciocci, M.; Seliktar, D.; Melino, S. Photo-Polymerization Damage Protection by Hydrogen Sulfide Donors for 3d-Cell Culture Systems Optimization. International journal of molecular sciences 2021, 22, 6095. [Google Scholar] [CrossRef]
- Olive, P.L.; Durand, R.E. Drug and Radiation Resistance in Spheroids: Cell Contact and Kinetics. Cancer and Metastasis Reviews 1994, 13, 121–138. [Google Scholar] [CrossRef]
- Trédan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug Resistance and the Solid Tumor Microenvironment. JNCI: Journal of the National Cancer Institute 2007, 99, 1441–1454. [Google Scholar] [CrossRef]
- Wenzel, C.; Riefke, B.; Gründemann, S.; Krebs, A.; Christian, S.; Prinz, F.; Osterland, M.; Golfier, S.; Räse, S.; Ansari, N.; et al. 3D High-Content Screening for the Identification of Compounds That Target Cells in Dormant Tumor Spheroid Regions. Experimental Cell Research 2014, 323, 131–143. [Google Scholar] [CrossRef]
- Grimes, D.R.; Kelly, C.; Bloch, K.; Partridge, M. A Method for Estimating the Oxygen Consumption Rate in Multicellular Tumour Spheroids. Journal of The Royal Society Interface 2014, 11, 20131124. [Google Scholar] [CrossRef] [PubMed]
- CIGB Centro de Ingeniería Genética y Biotecnología. Available online: https://www.cigb.edu.cu/en/project/cigb-300-lung/ (accessed on 10th December 2025).
- Perea, S.E.; Reyes, O.; Baladron, I.; Perera, Y.; Farina, H.; Gil, J.; Rodriguez, A.; Bacardi, D.; Marcelo, J.L.; Cosme, K.; et al. CIGB-300, a Novel Proapoptotic Peptide That Impairs the CK2 Phosphorylation and Exhibits Anticancer Properties Both in Vitro and in Vivo. Molecular and Cellular Biochemistry 2008, 316, 163–167. [Google Scholar] [CrossRef]
- Perea, S.E.; Baladrón, I.; Valenzuela, C.; Perera, Y. CIGB-300: A Peptide-Based Drug That Impairs the Protein Kinase CK2-Mediated Phosphorylation. Seminars in Oncology 2018, 45, 58–67. [Google Scholar] [CrossRef]
- Borgo, C.; Ruzzene, M. Role of Protein Kinase CK2 in Antitumor Drug Resistance. Journal of Experimental & Clinical Cancer Research 2019, 38, 287. [Google Scholar] [CrossRef] [PubMed]
- Firnau, M.-B.; Brieger, A. CK2 and the Hallmarks of Cancer. Biomedicines 2022, 10, 1987. [Google Scholar] [CrossRef]
- Bruserud, Ø.; Reikvam, H. Casein Kinase 2 (CK2): A Possible Therapeutic Target in Acute Myeloid Leukemia. Cancers 2023, 15, 3711. [Google Scholar] [CrossRef] [PubMed]
- Trembley, J.H.; Kren, B.T.; Afzal, M.; Scaria, G.A.; Klein, M.A.; Ahmed, K. Protein Kinase CK2–Diverse Roles in Cancer Cell Biology and Therapeutic Promise. Molecular and cellular biochemistry 2023, 478, 899–926. [Google Scholar] [CrossRef]
- Ghani, M.U.; Shi, J.; Du, Y.; Zhong, L.; Cui, H. A Comprehensive Review on the Dynamics of Protein Kinase CK2 in Cancer Development and Optimizing Therapeutic Strategies. International Journal of Biological Macromolecules 2024, 280, 135814. [Google Scholar] [CrossRef]
- Perera, Y.; Farina, H.G.; Gil, J.; Rodriguez, A.; Benavent, F.; Castellanos, L.; Gómez, R.E.; Acevedo, B.E.; Alonso, D.F.; Perea, S.E. Anticancer Peptide CIGB-300 Binds to Nucleophosmin/B23, Impairs Its CK2-Mediated Phosphorylation, and Leads to Apoptosis through Its Nucleolar Disassembly Activity. Molecular Cancer Therapeutics 2009, 8, 1189–1196. [Google Scholar] [CrossRef]
- Perera, Y.; Costales, H.C.; Diaz, Y.; Reyes, O.; Farina, H.G.; Mendez, L.; Gómez, R.E.; Acevedo, B.E.; Gomez, D.E.; Alonso, D.F.; et al. Sensitivity of Tumor Cells towards CIGB-300 Anticancer Peptide Relies on Its Nucleolar Localization. Journal of Peptide Science 2012, 18, 215–223. [Google Scholar] [CrossRef]
- Benavent Acero, F.; Capobianco, C.S.; Garona, J.; Cirigliano, S.M.; Perera, Y.; Urtreger, A.J.; Perea, S.E.; Alonso, D.F.; Farina, H.G. CIGB-300, an Anti-CK2 Peptide, Inhibits Angiogenesis, Tumor Cell Invasion and Metastasis in Lung Cancer Models. Lung Cancer 2017, 107, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Dai, L.; Lan, Y.; Tan, C.; Vázquez-Blomquist, D.M.; Zeng, G.; Jiang, D.; Yang, K.; Perea, S.E.; Perera, Y. CIGB-300 Internalizes and Impairs Viability of NSCLC Cells Lacking Actionable Targets by Inhibiting Casein Kinase-2 Signaling. Scientific Reports 2024, 14, 26038. [Google Scholar] [CrossRef] [PubMed]
- Farina, H.G.; Benavent Acero, F.; Perera, Y.; Rodríguez, A.; Perea, S.E.; Castro, B.A.; Gomez, R.; Alonso, D.F.; Gomez, D.E. CIGB-300, a Proapoptotic Peptide, Inhibits Angiogenesis in Vitro and in Vivo. Experimental Cell Research 2011, 317, 1677–1688. [Google Scholar] [CrossRef] [PubMed]
- Perea, S.E.; Baladron, I.; Garcia, Y.; Perera, Y.; Lopez, A.; Soriano, J.L.; Batista, N.; Palau, A.; Hernández, I.; Farina, H.; et al. CIGB-300, a Synthetic Peptide-Based Drug That Targets the CK2 Phosphoaceptor Domain. Translational and Clinical Research. Molecular and Cellular Biochemistry 2011, 356, 45–50. [Google Scholar] [CrossRef]
- Open Clinical Trial, Uncontrolled in Patients Bearing Squamous Cell Carcinoma or Adenocarcinoma of the Cervix Stage IIA and IIB FIGO Classification Treated With Radiotherapy External Endocavitary Brachytherapy + Concurrent Hemotherapy Weekly Systemic and Local Application of CIGB-300 Dose Escalation 2012. Also . Available online: https://go.drugbank.com/drugs/DB16464/clinical_trials?conditions=DBCOND0029359%2CDBCOND0029361&phase=2&status=completed (accessed on 5th December 2025).
- Gottardo, M.F.; Capobianco, C.S.; Sidabra, J.E.; Garona, J.; Perera, Y.; Perea, S.E.; Alonso, D.F.; Farina, H.G. Preclinical Efficacy of CIGB-300, an Anti-CK2 Peptide, on Breast Cancer Metastasic Colonization. Scientific Reports 2020, 10, 14689. [Google Scholar] [CrossRef]
- Bellomaria, A.; Barbato, G.; Melino, G.; Paci, M.; Melino, S. Recognition of P63 by the E3 Ligase ITCH: Effect of an Ectodermal Dysplasia Mutant. Cell cycle 2010, 9, 3754–3763. [Google Scholar] [CrossRef]
- Bellomaria, A.; Barbato, G.; Melino, G.; Paci, M.; Melino, S. Recognition Mechanism of P63 by the E3 Ligase Itch: Novel Strategy in the Study and Inhibition of This Interaction. Cell cycle 2012, 11, 3638–3648. [Google Scholar] [CrossRef]
- Savioli, M.; Antonelli, L.; Bocchinfuso, G.; Cavalieri, F.; Cimino, R.; Gatto, E.; Placidi, E.; Fernandez Masso, J.R.; Garay Perez, H.; Santana, H.; et al. Formulation Matters! A Spectroscopic and Molecular Dynamics Investigation on the Peptide CIGB552 as Itself and in Its Therapeutical Formulation. Journal of Peptide Science 2022, 28, e3356. [Google Scholar] [CrossRef]
- Micsonai, A.; Wien, F.; Bulyáki, É.; Kun, J.; Moussong, É.; Lee, Y.-H.; Goto, Y.; Réfrégiers, M.; Kardos, J. BeStSel: A Web Server for Accurate Protein Secondary Structure Prediction and Fold Recognition from the Circular Dichroism Spectra. Nucleic Acids Research 2018, 46, W315–W322. [Google Scholar] [CrossRef]
- Arciero, I.; Buonvino, S.; Palumbo, V.; Scimeca, M.; Melino, S. A 3D-Printable Cell Array for In Vitro Breast Cancer Modeling. International Journal of Molecular Sciences 2024, 25. [Google Scholar] [CrossRef]
- Pradhan, S.; Hassani, I.; Seeto, W.J.; Lipke, E.A. PEG-Fibrinogen Hydrogels for Three-Dimensional Breast Cancer Cell Culture. Journal of Biomedical Materials Research Part A 2017, 105, 236–252. [Google Scholar] [CrossRef]
- You, H.; Li, Q.; Kong, D.; Liu, X.; Kong, F.; Zheng, K.; Tang, R. The Interaction of Canonical Wnt/β-Catenin Signaling with Protein Lysine Acetylation. Cellular & Molecular Biology Letters 2022, 27, 7. [Google Scholar] [CrossRef]
- Lavrentev, F.V.; Shilovskikh, V.V.; Alabusheva, V.S.; Yurova, V.Yu.; Nikitina, A.A.; Ulasevich, S.A.; Skorb, E.V. Diffusion-Limited Processes in Hydrogels with Chosen Applications from Drug Delivery to Electronic Components. Molecules 2023, 28, 5931. [Google Scholar] [CrossRef] [PubMed]
- Sheth, S.; Barnard, E.; Hyatt, B.; Rathinam, M.; Zustiak, S.P. Predicting Drug Release From Degradable Hydrogels Using Fluorescence Correlation Spectroscopy and Mathematical Modeling. Frontiers in Bioengineering and Biotechnology 2019, 7–2019. [Google Scholar] [CrossRef] [PubMed]
- Strachota, B.; Strachota, A.; Šlouf, M.; Brus, J.; Cimrová, V. Monolithic Intercalated PNIPAm/Starch Hydrogels with Very Fast and Extensive One-Way Volume and Swelling Responses to Temperature and pH: Prospective Actuators and Drug Release Systems. Soft Matter 2019, 15, 752–769. [Google Scholar] [CrossRef]
- Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-Responsive Hydrogels: Theory, Modern Advances, and Applications. Materials Science and Engineering: R: Reports 2015, 93, 1–49. [Google Scholar] [CrossRef]
- Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A.A. Hydrogels: Experimental Characterization and Mathematical Modelling of Their Mechanical and Diffusive Behaviour. Chem. Soc. Rev. 2018, 47, 2357–2373. [Google Scholar] [CrossRef]
- Omar, J.; Ponsford, D.; Dreiss, C.A.; Lee, T.-C.; Loh, X.J. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chemistry – An Asian Journal 2022, 17, e202200081. [Google Scholar] [CrossRef]
- Ye, K. Nucleophosmin/B23, a Multifunctional Protein That Can Regulate Apoptosis. Cancer Biology & Therapy 2005, 4, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Tawfic, S.; Olson, M.O.; Ahmed, K. Role of Protein Phosphorylation in Post-Translational Regulation of Protein B23 during Programmed Cell Death in the Prostate Gland (∗). Journal of Biological Chemistry 1995, 270, 21009–21015. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ulloa, A.; Ramos, Y.; Gil, J.; Perera, Y.; Castellanos-Serra, L.; García, Y.; Betancourt, L.; Besada, V.; González, L.J.; Fernández-de-Cossio, J. Proteomic Profile Regulated by the Anticancer Peptide CIGB-300 in Non-Small Cell Lung Cancer (NSCLC) Cells. Journal of proteome research 2010, 9, 5473–5483. [Google Scholar] [CrossRef]
- Di Matteo, A.; Franceschini, M.; Chiarella, S.; Rocchio, S.; Travaglini-Allocatelli, C.; Federici, L. Molecules That Target Nucleophosmin for Cancer Treatment: An Update. Oncotarget 2016, 7, 44821. [Google Scholar] [CrossRef]
- Cela, I.; Di Matteo, A.; Federici, L. Nucleophosmin in Its Interaction with Ligands. International Journal of Molecular Sciences 2020, 21, 4885. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, M.; Chen, H.; Gu, J.; Zhang, J.; Shen, B.; Deng, X.; Xie, J.; Zhan, X.; Peng, C. NPM1 Activates Metabolic Changes by Inhibiting FBP1 While Promoting the Tumorigenicity of Pancreatic Cancer Cells. Oncotarget 2015, 6, 21443. [Google Scholar] [CrossRef]
- Léotoing, L.; Meunier, L.; Manin, M.; Mauduit, C.; Decaussin, M.; Verrijdt, G.; Claessens, F.; Benahmed, M.; Veyssière, G.; Morel, L.; et al. Influence of Nucleophosmin/B23 on DNA Binding and Transcriptional Activity of the Androgen Receptor in Prostate Cancer Cell. Oncogene 2008, 27, 2858–2867. [Google Scholar] [CrossRef]
- Yun, J.; Miao, J.; Chen, G.; Tian, Q.; Zhang, C.; Xiang, J.; Fu, J.; Lai, P. Increased Expression of Nucleophosmin/B23 in Hepatocellular Carcinoma and Correlation with Clinicopathological Parameters. British journal of cancer 2007, 96, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, J.; Yang, L.; Yan, Y.; Shi, W.; Shi, J.; Huang, Q.; Chen, J.; Lan, Q. Upregulation of B23 Promotes Tumor Cell Proliferation and Predicts Poor Prognosis in Glioma. Biochemical and Biophysical Research Communications 2015, 466, 124–130. [Google Scholar] [CrossRef]
- Holmberg Olausson, K.; Elsir, T.; Moazemi Goudarzi, K.; Nistér, M.; Lindström, M.S. NPM1 Histone Chaperone Is Upregulated in Glioblastoma to Promote Cell Survival and Maintain Nucleolar Shape. Scientific reports 2015, 5, 16495. [Google Scholar] [CrossRef]
- Kuo, Y.; Chen, Y.; Tsai, H.; Chai, C.; Kwan, A. Nucleophosmin Overexpression Is Associated with Poor Survival in Astrocytoma. APMIS 2015, 123, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Pianta, A.; Puppin, C.; Franzoni, A.; Fabbro, D.; Di Loreto, C.; Bulotta, S.; Deganuto, M.; Paron, I.; Tell, G.; Puxeddu, E. Nucleophosmin Is Overexpressed in Thyroid Tumors. Biochemical and biophysical research communications 2010, 397, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Sasaki, H.; Kino, I.; Sugimura, T.; Terada, M. Genes Preferentially Expressed in Embryo Stomach Are Predominantly Expressed in Gastric Cancer. Cancer research 1992, 52, 3372–3377. [Google Scholar] [PubMed]
- Nozawa, Y.; Van Belzen, N.; Van Der Made, A.C.; Dinjens, W.N.; Bosman, F.T. Expression of Nucleophosmin/B23 in Normal and Neoplastic Colorectal Mucosa. The Journal of pathology 1996, 178, 48–52. [Google Scholar] [CrossRef]
- Yung, B.Y.M. Oncogenic Role of Nucleophosmin/B23. Chang Gung Medical Journal 2007, 30, 285–293. [Google Scholar] [PubMed]
- Colombo, E.; Alcalay, M.; Pelicci, P. Nucleophosmin and Its Complex Network: A Possible Therapeutic Target in Hematological Diseases. Oncogene 2011, 30, 2595–2609. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-H. ABC Transporters as Multidrug Resistance Mechanisms and the Development of Chemosensitizers for Their Reversal. Cancer Cell International 2005, 5, 30. [Google Scholar] [CrossRef]
- Okada, T.; Tanaka, K.; Nakatani, F.; Sakimura, R.; Matsunobu, T.; Li, X.; Hanada, M.; Nakamura, T.; Oda, Y.; Tsuneyoshi, M. Involvement of P-glycoprotein and MRP1 in Resistance to Cyclic Tetrapeptide Subfamily of Histone Deacetylase Inhibitors in the Drug-resistant Osteosarcoma and Ewing’s Sarcoma Cells. International journal of cancer 2006, 118, 90–97. [Google Scholar] [CrossRef]
- Wang, L.; Chen, B.; Lin, M.; Cao, Y.; Chen, Y.; Chen, X.; Liu, T.; Hu, J. Decreased Expression of Nucleophosmin/B23 Increases Drug Sensitivity of Adriamycin-Resistant Molt-4 Leukemia Cells through Mdr-1 Regulation and Akt/mTOR Signaling. Immunobiology 2015, 220, 331–340. [Google Scholar] [CrossRef]
- Ciocci, M.; Cacciotti, I.; Seliktar, D.; Melino, S. Injectable Silk Fibroin Hydrogels Functionalized with Microspheres as Adult Stem Cells-Carrier Systems. International Journal of Biological Macromolecules 2018, 108, 960–971. [Google Scholar] [CrossRef]
- Garibbo, A.; Boragno, C.; Gagliardi, F. Patent LDO0252 Film super idrofobico–Mesap IPC–B08B17/06; B29C39/14|B29C39/148 US20120181717A1 2019. Available online: https://patents.google.com/patent/US20120181717A1/en?oq=US20120181717A1 (accessed on 20th December 2025).
- Koyanagi, M.; Kawakabe, S.; Arimura, Y. A Comparative Study of Colorimetric Cell Proliferation Assays in Immune Cells. Cytotechnology 2016, 68, 1489–1498. [Google Scholar] [CrossRef] [PubMed]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
