Submitted:
27 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Denoising Techniques for computer vision (CV) and natural language processing (NLP) tasks [20,21] offer valuable methodologies for handling label noise. However, their application to sequential recommendation is problematic, as user interactions lack objective ‘ground-truth’ labels. Furthermore, these techniques are ill-equipped to handle the high-dimensional item spaces and the complex, sparse nature of recommendation data.
2. Background and Fundamentals
2.1. The Construction of Data Instances for Sequential Recommendation
2.2. The Training and Inference Paradigms of Conventional SRSs
2.3. The Definition of Robustness for Sequential Recommendation
- Training-phase Robustness: During training, the RSR must precisely identify items within the input sequence that are genuinely relevant to the target (i.e., driven by the same intrinsic motivations). By focusing on these items, the model avoids learning erroneous patterns from perturbations [15,25].

3. Unreliable Instances in Sequential Recommendation
3.1. The Causes of Unreliable Instances
3.2. The Manifestations of Unreliable Instances
- Complete Mismatch [13,14]: This occurs when the target item is itself a perturbation, rendering it completely mismatched with the input sequence. For example, as shown in Figure 4, a romantic film like ‘La La Land’ as the perturbed target is completely irrelevant to a preceding input sequence of superhero movies.
3.3. The Adverse Impacts of Unreliable Instances
3.4. The Relationship Between Unreliable Instances and General Data Noise
4. Unique Challenges Faced by RSRs
5. Taxonomy and Comparative Analysis of RSRs
- ❶
- Architecture-centric RSRs embed robustness directly into the model architecture through perturbation-resistant designs (e.g., gating mechanisms or diffusion models), ensuring stable internal representations despite perturbed sequences.
- ❷
- Data-centric RSRs operate at the Instance Construction stage, focusing on cleansing training data before or during model training. They proactively identify and rectify mismatched input-target pairs (via selection, reweighting, or correction), thereby eliminating erroneous sequential patterns from the training process.
- ❸
- Learning-centric RSRs introduce robustness during model training. Rather than modifying the data or core architecture, they leverage specialized training strategies (e.g., adversarial training, robust loss functions) to guide the model to learn genuine user preferences while diminishing the influence of unreliable instances.
- ❹
- Inference-centric RSRs address robustness at the final model inference stage. Acknowledging that real-time input sequences may contain perturbations, these methods generate comprehensive and balanced recommendation lists that fully capture users’ underlying motivations and avoid being skewed by perturbations.

- P1.
- Multi-cause Robustness: Ability to address diverse extrinsic motivations (behavioral randomness, contextual influences, malicious manipulations) that induce unreliable instances.
- P2.
- Dual-manifestation Robustness: Capacity to handle both complete mismatch (perturbed targets) and partial mismatch (perturbed inputs).
- P3.
- Dual-phase Robustness: Capability to satisfy robustness requirements (Section 2.3) in both the training phase and the inference phase.
- P7.
- Motivation Transformation Awareness: Ability to model transformations between intrinsic and extrinsic motivations over time.
- P5.
- Generality: Compatibility with existing SRSs without extensive architectural modifications.
- P6.
- Data Accessibility: Independence from side information (e.g., item attributes, user demographics) beyond raw user-item interaction data.
- P7.
- Scalability: Efficiency in large-scale real-world scenarios.
- P8.
- Theoretical Grounding: Existence of formal theoretical guarantees (e.g., robustness bounds, convergence proofs) for the method’s efficacy.
5.1. Architecture-Centric RSRs
5.1.1. Architecture-Centric RSRs Based on Attention Mechanism
5.1.2. Architecture-Centric RSRs Based on Memory Networks
5.1.3. Architecture-Centric RSRs Based on Gating Networks
5.1.4. Architecture-Centric RSRs Based on Graph Neural Networks
5.1.5. Architecture-Centric RSRs Based on Time–Frequency Analysis
| Category | Method | P1 Multi-cause Robustness |
P2 Dual- manifestation Robustness |
P3 Dual-phase Robustness |
P4 Motivation Transformation Awareness |
P5 Generality |
P6 Data Accessibility |
P7 Scalability |
P8 Theoretical Grounding |
|
|---|---|---|---|---|---|---|---|---|---|---|
| Attention Mechanism (§ Section 5.1.1) |
Basic Attention |
NARM [58] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × |
| STAMP [59] | ▵ | ▵ | ▵ | × | × | ∘ | ∘ | × | ||
| Self Attention |
SASRec [23] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | |
| BERT4Rec [61] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| DT4Rec [62] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| STOSA [43] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| ADT [63] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| AC-TSR [64] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Sparse Attention |
DSAN [65] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | |
| Locker [67] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| RecDenoiser [68] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| RETR [69] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| DPDM [70] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| AutoDisenSeq [71] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Knowledge- enhanced Attention |
IARN [72] | ▵ | ▵ | ▵ | × | × | × | × | × | |
| NOVA [73] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| KGDPL [74] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| Memory Networks (§ Section 5.1.2) |
Key-value MN |
RUM [76] | ▵ | ▵ | ▵ | × | × | ∘ | × | × |
| MAGNN [77] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| DMAN [78] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| MASR [79] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Knowledge- enhanced MN |
KSR [80] | ▵ | ▵ | ▵ | × | × | × | × | × | |
| CmnRec [81] | ▵ | ▵ | ▵ | × | × | × | ▵ | × | ||
| LMN [82] | ▵ | ▵ | ▵ | × | × | × | ▵ | × | ||
| Gating Networks (§ Section 5.1.3) |
Basic Gating Networks |
HGN [84] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × |
| M3R [85] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| ASPPA [86] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| STAR-Rec [87] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Consistency- aware Gating Networks |
-Net [88] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | |
| CAR [89] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| MAN [91] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| S2PNM [90] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Graph Neural Networks (§ Section 5.1.4) |
Basic GNNs |
GCSAN [120] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × |
| SRGNN [121] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Knowledge- enhanced GNNs |
IMFOU [93] | ▵ | ▵ | ▵ | × | × | × | × | × | |
| FAPAT [94] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| I-DIDA [96] | ▵ | ▵ | ▵ | ▵ | × | × | × | × | ||
| TGODE [95] | ▵ | ▵ | ▵ | ▵ | × | × | × | × | ||
| Sparse GNNs |
SLED [97] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | |
| MAERec [98] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| GDRN [99] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| RAIN [100] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| MA-GCL4SR [101] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Time-frequency Analysis (§ Section 5.1.5) |
Fourier Transform |
FMLP [103] | ▵ | ▵ | ▵ | × | × | ∘ | ∘ | × |
| SLIME4Rec [104] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| BSARec [105] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| FDCLRec [106] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| LFDFSR [107] | ▵ | ▵ | ▵ | × | × | × | ▵ | × | ||
| END4Rec [108] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| DPCPL [109] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| SSR [110] | ▵ | ▵ | ▵ | × | × | ∘ | ∘ | × | ||
| Oracle4Rec [111] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| DIFF [112] | ▵ | ▵ | ▵ | × | × | × | ▵ | × | ||
| Wavelet Transform |
Wavelet [113] | ▵ | ▵ | ▵ | × | × | ∘ | ∘ | × | |
| WaveRec [114] | ▵ | ▵ | ▵ | × | × | ∘ | ∘ | × | ||
| WEARec [115] | ▵ | ▵ | ▵ | × | × | ∘ | ∘ | × | ||
| Hybrid Frequency Attention |
FEARec [116] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | |
| MUFFIN [117] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| FICLRec [118] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| MIRRN [119] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| Diffusion Models (§ Section 5.1.6) |
Basic Diffusion |
DiffuRec [120] | ▵ | ▵ | ▵ | × | × | ∘ | × | × |
| CF-Diff [121] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| Conditional Diffusion |
CDDRec [122] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | |
| SeeDRec [123] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| M3BSR [124] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| TDM [125] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| Advanced Diffusion |
PDRec [126] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | |
| FMRec [127] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| ADRec [128] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| DiffDiv [129] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| DiQDiff [130] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
5.1.6. Architecture-Centric RSRs Based on Diffusion Models
5.2. Data-Centric RSRs
5.2.1. Data-Centric RSRs Based on Instance Selection
5.2.2. Data-Centric RSRs Based on Instance Correction
5.2.3. Data-Centric RSRs based on Data Augmentation
| Category | Method | P1 Multi-cause Robustness |
P2 Dual- manifestation Robustness |
P3 Dual-phase Robustness |
P4 Motivation Transformation Awareness |
P5 Generality |
P6 Data Accessibility |
P7 Scalability |
P8 Theoretical Grounding |
|
|---|---|---|---|---|---|---|---|---|---|---|
| Instance Selection (§ Section 5.2.1) |
Loss- uncertainty Modeling |
BERD [131] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ▵ | × |
| BERD+ [132] | ▵ | ▵ | ▵ | × | ∘ | × | ▵ | × | ||
| PLD [133] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × | ||
| Semantic Modeling |
LoRec [136] | ▵ | ▵ | ▵ | × | ∘ | × | × | × | |
| ConsRec [134] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| Instance Correction (§ Section 5.2.2) |
Data-driven Correction |
STEAM [42] | ▵ | ∘ | ▵ | × | ∘ | ∘ | × | × |
| BirDRec [15] | ▵ | ∘ | ▵ | × | ∘ | ∘ | ▵ | ∘ | ||
| DR4SR [137] | ▵ | ∘ | ▵ | × | ∘ | ∘ | ▵ | × | ||
| LLM-guided Correction |
LLM4DSR [138] | ▵ | ▵ | ▵ | × | ∘ | × | × | × | |
| LLM4RSR [139] | ▵ | ∘ | ▵ | × | ∘ | × | ▵ | × | ||
| IADSR [140] | ▵ | ▵ | ▵ | × | ∘ | ▵ | × | × | ||
| Data Augmentation (§ Section 5.2.3) |
Rule-based Augmentation |
PERIS [141] | ▵ | ▵ | ▵ | × | ∘ | ▵ | ∘ | × |
| MRFI [143] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × | ||
| ASSR [142] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ▵ | × | ||
| Model-base Augmentation |
Diff4Rec [144] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × | |
| DiffuASR [145] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × | ||
| SSDRec [146] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × | ||
| CeDRec [147] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| TTA [148] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × | ||
5.3. Learning-Centric RSRs
5.3.1. Learning-Centric RSRs Based on Adversarial Training
5.3.2. Learning-Centric RSRs Based on Reinforcement Learning
5.3.3. Learning-Centric RSRs Based on Distributionally Robust Optimization
5.3.4. Learning-Centric RSRs Based on Self-supervised Learning
5.3.5. Learning-Centric RSRs Based on Causal Learning
5.3.6. Learning-Centric RSRs Based on Curriculum Learning
| Category | Method | P1 Multi-cause Robustness |
P2 Dual- manifestation Robustness |
P3 Dual-phase Robustness |
P4 Motivation Transformation Awareness |
P5 Generality |
P6 Data Accessibility |
P7 Scalability |
P8 Theoretical Grounding |
|
|---|---|---|---|---|---|---|---|---|---|---|
| Adversarial Training (§ Section 5.3.1) |
Gradient- based AT |
AdvTrain [149] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × |
| PamaCF [151] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | ∘ | ||
| VAT [152] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × | ||
| MVS [150] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × | ||
| Qian et al. [153] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × | ||
| Sequence- based AT |
AdvGraph [154] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × | |
| DARTS [155] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × | ||
| Reinforcement Learning (§ Section 5.3.2) |
Sequence Construction |
HRL [156] | ▵ | ▵ | ▵ | × | × | ∘ | × | × |
| SAR [159] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| RLNF [160] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| HRL4Ba [157] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| MHRR [158] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| Feature Selection |
KERL [161] | ▵ | ▵ | ▵ | × | × | × | × | × | |
| MARIS [162] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| Distributionally Robust Optimization (§ Section 5.3.3) |
Partition- based DRO |
S-DRO [164] | ▵ | ▵ | ▵ | ∘ | ∘ | ∘ | ∘ | ▵ |
| IDEA [165] | ▵ | ▵ | ▵ | ∘ | ∘ | ∘ | ∘ | ▵ | ||
| Distribution- based DRO |
DROS [166] | ▵ | ▵ | ▵ | ∘ | ∘ | ∘ | ∘ | ▵ | |
| RSR [167] | ▵ | ▵ | ▵ | ∘ | ∘ | ∘ | ∘ | ▵ | ||
| Model- based DRO |
DePoD [168] | ▵ | ▵ | ▵ | ∘ | ∘ | ∘ | × | ▵ | |
| E-NSDE [169] | ▵ | ▵ | ▵ | ∘ | ∘ | ∘ | × | ▵ | ||
| IDURL [170] | ▵ | ▵ | ▵ | ∘ | ∘ | × | × | ▵ | ||
| Self-supervised Learning (§ Section 5.3.4) |
Feature-level SSL |
DCRec [171] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × |
| FCLRec [172] | ▵ | ▵ | ▵ | × | × | × | ▵ | × | ||
| SGCL [173] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| BHGCL [174] | ▵ | ▵ | ▵ | × | × | × | ▵ | × | ||
| Sequence-level SSL |
RAP [175] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | |
| CLEA [176] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| ICL [177] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| BNCL [178] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| CL4Rec [199] | ▵ | ▵ | ▵ | × | × | ∘ | ∘ | × | ||
| ICSRec [180] | ▵ | ▵ | ▵ | × | × | ∘ | ∘ | × | ||
| IOCLRec [181] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| AsarRec [182] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × | ||
| Model-level SSL |
DuoRec [183] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ▵ | × | |
| SHT [185] | ▵ | ▵ | ▵ | × | ∘ | ∘ | × | × | ||
| ContrastVAE [184] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| AdaptSSR [186] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| MCLRec [187] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| MStein [188] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| LMA4Rec [189] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Causal Learning (§ Section 5.3.5) |
Counterfactual Sequence Intervention |
CauseRec [44] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × |
| CASR [190] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × | ||
| PACIFIC [192] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Structural Causal Modeling |
CoDeR [193] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | |
| CSRec [195] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| DePOI [196] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| Curriculum Learning (§ Section 5.3.6) |
Static Hardness Measurement |
GNNO [197] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × |
| Diff4Rec [144] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ▵ | × | ||
| MELT [198] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × | ||
| Dynamic Hardness Measurement |
CCl [200] | ▵ | ▵ | ▵ | × | ∘ | × | ∘ | × | |
| HSD [199] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × | ||
| CDR [201] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × | ||
| EXHANS [202] | ▵ | ▵ | ▵ | × | ∘ | ∘ | ∘ | × | ||
5.4. Inference-Centric RSRs
5.4.1. Inference-Centric RSRs Based on Recommendation Calibration
5.4.2. Inference-Centric RSRs Based on Multi-Interest Disentanglement
| Category | Method | P1 Multi-cause Robustness |
P2 Dual- manifestation Robustness |
P3 Dual-phase Robustness |
P4 Motivation Transformation Awareness |
P5 Generality |
P6 Data Accessibility |
P7 Scalability |
P8 Theoretical Grounding |
|
|---|---|---|---|---|---|---|---|---|---|---|
| Recommendation Calibration (§ Section 5.4.1) |
Post-processing Calibration |
CaliRec [203] | ▵ | ▵ | ▵ | × | ∘ | × | × | × |
| Calib-Opt [204] | ▵ | ▵ | ▵ | × | ∘ | × | × | × | ||
| TecRec [206] | ▵ | ▵ | ▵ | × | ∘ | × | × | × | ||
| MCF [207] | ▵ | ▵ | ▵ | × | ∘ | × | × | × | ||
| LeapRec [208] | ▵ | ▵ | ▵ | × | ∘ | × | × | × | ||
| End-to-End Calibration |
DACSR [209] | ▵ | ▵ | ▵ | × | × | × | ▵ | × | |
| CSBR [210] | ▵ | ▵ | ▵ | × | × | × | ▵ | × | ||
| CaliTune [211] | ▵ | ▵ | ▵ | × | × | × | ▵ | × | ||
| Multi-interest Disentanglement (§ Section 5.4.2) |
Adaptive Interest Disentanglement |
MIND [ ] | ▵ | ▵ | ▵ | × | × | × | × | × |
| MCPRN [215] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| MRIF [216] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| MGNM [217] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| BaM [218] | ▵ | ▵ | ▵ | × | × | ∘ | ∘ | × | ||
| ComiRec [213] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| Regularized Interest Disentanglement |
IDSR [219] | ▵ | ▵ | ▵ | × | × | × | × | × | |
| MDSR [220] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| CMI [221] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Re4 [222] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| TiMiRec [223] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| REMI [224] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| DisMIR [225] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
| Knowledge-guided Interest Disentanglement |
MISSRec [226] | ▵ | ▵ | ▵ | × | × | × | × | × | |
| CoLT [227] | ▵ | ▵ | ▵ | × | × | ∘ | ▵ | × | ||
| Trinity [228] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| CoMoRec [229] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| SimEmb [230] | ▵ | ▵ | ▵ | × | × | × | × | × | ||
| HORAE [231] | ▵ | ▵ | ▵ | × | × | ∘ | × | × | ||
6. Evaluation Metrics and Benchmarks of RSRs
6.1. Evaluation Metrics of RSRs
6.1.1. Training-Phase Robustness Metrics
6.1.2. Inference-Phase Robustness Metrics
6.1.3. Discussion of RSR Metrics
- (i)
- Incomplete dual-phase assessment. Most existing RSRs rely solely on training-phase or inference-phase metrics in isolation, ignoring the complementarity of the two phases. This one-sided assessment fails to capture the holistic robustness of RSRs, as a model may perform well in training but fail to generalize to perturbed input sequences during inference (and vice versa).
- (ii)
- Conflation of perturbation skewness and preference concentration. Current diversity-based metrics fail to disentangle perturbation-induced skewness and users’ inherently focused preferences, both of which lead to low diversity values, resulting in misjudgments of model robustness. However, addressing such conflation fundamentally relies on explicit motivation annotations, which are absent in existing datasets (detailed in Section 7).
- (iii)
- Over reliance on high-quality category attributes. Most Inference-phase robustness metrics (except ILD@K) depend on predefined item category attributes, which are often manually annotated, heuristically derived, or incomplete in real-world scenarios. The lack of standardized, high-quality category information limits the generalizability of these metrics across different recommendation domains.
6.2. Benchmarks for Evaluating RSRs
6.2.1. Statistics of Representative Benchmarks
6.2.2. Discussion of RSR Benchmarks
- (i)
- Absence of ground-truth reliability annotations. Current benchmarks lack labels to distinguish between reliable and unreliable instances. This limits supervised RSR training and weakens the validity of robustness evaluation (as detailed in Challenge 1, Section 4).
- (ii)
- Lack of dataset selection standards. Disparate benchmark choices across studies hinder fair comparison. We advocate prioritizing high-impact, frequently cited datasets per domain: MovieLens (Movie), Beauty_and_Personal_Care (E-commerce), Last-FM (Music), Steam (Game), MIND (News), and Gowalla (LBSN).
- (iii)
- No unified pre-processing protocols. Variable filtering thresholds for inactive users and cold items lead to inconsistent data distributions, which hinder direct cross-study comparison. We appeal to standardize thresholds to 5, which balances sparsity reduction and preservation of meaningful behavioral patterns [236].
- (iv)
- Unstandardized Negative Sampling. To balance computational efficiency and evaluation feasibility in large-scale item catalogs, many RSR studies [13,23,80] adopt diverse negative sampling strategies (e.g. random/hard sampling) [237]. However, such practices also restrict cross-study comparison and lead to biased evaluation [238]. Given the advancements in GPU-accelerated computing that enable efficient full-item-set ranking, we advocate abandoning sampling-based negative item selection in RSR evaluation.
7. Open Issues and Future Directions
8. Conclusion
References
- Wang, S.; Cao, L.; Wang, Y.; Sheng, Q.Z.; Orgun, M.A.; Lian, D. A Survey on Session-based Recommender Systems. ACM Computing Surveys (CSUR) 2022, 54, 154:1–154:38. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, S.; Fu, Z.; Tan, J.; Li, Z.; Xu, S.; Li, Y.; Xian, Y.; Zhang, Y. A Survey on Trustworthy Recommender Systems. ACM TORS 2024, 3. [Google Scholar] [CrossRef]
- Wang, S.; Hu, L.; Wang, Y.; Cao, L.; Sheng, Q.Z.; Orgun, M. Sequential recommender systems: challenges, progress and prospects. In Proceedings of the IJCAI, 2019; pp. 6332–6338. [Google Scholar]
- Fang, H.; Zhang, D.; Shu, Y.; Guo, G. Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations. ACM TOIS 2020, 39, 1–42. [Google Scholar] [CrossRef]
- McAuley, J.; Leskovec, J. Hidden factors and hidden topics: understanding rating dimensions with review text. In Proceedings of the RecSys, 2013; pp. 165–172. [Google Scholar]
- Bao, Y.; Fang, H.; Zhang, J. TopicMF: Simultaneously Exploiting Ratings and Reviews for Recommendation. TopicMF: Simultaneously Exploiting Ratings and Reviews for Recommendation. In Proceedings of the AAAI, 2014, Vol. 14, pp. 2–8. [CrossRef]
- Kim, D.; Park, C.; Oh, J.; Lee, S.; Yu, H. Convolutional matrix factorization for document context-aware recommendation. In Proceedings of the RecSys, 2016; pp. 233–240. [Google Scholar]
- He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the TheWebConf, 2017; pp. 173–182. [Google Scholar]
- He, X.; Du, X.; Wang, X.; Tian, F.; Tang, J.; Chua, T.S. Outer product-based neural collaborative filtering. In Proceedings of the IJCAI, 2018. [Google Scholar]
- Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms. In Proceedings of the TheWebConf, 2001; pp. 285–295. [Google Scholar]
- Brühlmann, F.; Vollenwyder, B.; Opwis, K.; Mekler, E.D. Measuring the "Why" of Interaction: Development and Validation of the User Motivation Inventory (UMI). In Proceedings of the CHI, 2018; pp. 1–13. [Google Scholar]
- Bennett, D.; Mekler, E.D. Beyond Intrinsic Motivation: The Role of Autonomous Motivation in User Experience. ACM TOCHI 2024, 31, 60:1–60:41. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Sun, Z.; Yang, X. Does Every Data Instance Matter? Enhancing Sequential Recommendation by Eliminating Unreliable Data. In Proceedings of the IJCAI, 2021; pp. 1579–1585. [Google Scholar]
- Sun, Y.; Yang, X.; Sun, Z.; Wang, B. BERD+: A Generic Sequential Recommendation Framework by Eliminating Unreliable Data with Item-and Attribute-level Signals. ACM TOIS 2023, 42, 1–33. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Sun, Z.; Yang, X.; Wang, Y. Theoretically Guaranteed Bidirectional Data Rectification for Robust Sequential Recommendation. In Proceedings of the NeurIPS, 2023; pp. 2850–2876. [Google Scholar]
- Ceci, L. TikTok: fake engagement prevented 2021-2024, 2024. Available online: https://www.statista.com/statistics/1318268/tiktok-fake-interactions-prevented/.
- Community Standards Enforcement Report, Fake Accounts, 2024. Available online: https://transparency.meta.com/reports/community-standards-enforcement/fake-accounts/facebook.
- Zhang, K.; Cao, Q.; Sun, F.; Wu, Y.; Tao, S.; Shen, H.; Cheng, X. Robust Recommender System: A Survey and Future Directions. ACM Computing Surveys (CSUR), 2025. [Google Scholar]
- Nguyen, T.T.; Hung, N.Q.V.; Nguyen, T.T.; Huynh, T.T.; Nguyen, T.T.; Weidlich, M.; Yin, H. Manipulating Recommender Systems: A Survey of Poisoning Attacks and Countermeasures. ACM Computing Surveys (CSUR) 2025, 57, 3:1–3:39. [Google Scholar] [CrossRef]
- Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.G. Learning From Noisy Labels With Deep Neural Networks: A Survey. IEEE TNNLS, 2022; pp. 8135–8153. [Google Scholar]
- Pang, G.; Shen, C.; Cao, L.; van den Hengel, A. Deep Learning for Anomaly Detection: A Review. ACM Computing Surveys (CSUR) 2022, 54, 38:1–38:38. [Google Scholar] [CrossRef]
- Tang, J.; Wang, K. Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. In Proceedings of the WSDM, 2018; pp. 565–573. [Google Scholar]
- Kang, W.C.; McAuley, J. Self-attentive sequential recommendation. In Proceedings of the ICDM, 2018; pp. 197–206. [Google Scholar]
- Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings of the UAI, 2009; pp. 452–461. [Google Scholar]
- Sun, Y.; Yang, X.; Sun, Z.; Wang, Y.; Wang, B.; Qu, X. LLM4RSR: Large Language Models as Data Correctors for Robust Sequential Recommendation. In Proceedings of the AAAI, 2025, pp. 12604–12612. [CrossRef]
- Jeon, H.; Yoon, S.; McAuley, J.J. Calibration-Disentangled Learning and Relevance-Prioritized Reranking for Calibrated Sequential Recommendation. In Proceedings of the CIKM, 2024; pp. 973–982. [Google Scholar]
- Zhao, X.; Zhu, Z.; Caverlee, J. Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with Evolving Interests. In Proceedings of the TheWebConf, 2021; pp. 888–899. [Google Scholar]
- Kaplan, Y.; Krasne, N.; Shtoff, A.; Somekh, O. Unbiased Filtering of Accidental Clicks in Verizon Media Native Advertising. In Proceedings of the CIKM, 2021; pp. 3878–3887. [Google Scholar]
- Tolomei, G.; Lalmas, M.; Farahat, A.; Haines, A. You must have clicked on this ad by mistake! Data-driven identification of accidental clicks on mobile ads with applications to advertiser cost discounting and click-through rate prediction. International Journal of Data Science and Analytics 2019, 7, 53–66. [Google Scholar] [CrossRef]
- Yao, F.; Li, C.; Nekipelov, D.; Wang, H.; Xu, H. Learning the Optimal Recommendation from Explorative Users. In Proceedings of the AAAI, 2022; pp. 9457–9465. [Google Scholar]
- He, J.; Liu, H. Mining Exploratory Behavior to Improve Mobile App Recommendations. ACM TOIS 2017, 35, 32:1–32:37. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Xu, C.; Le, Y.; Sharma, M.; Richardson, L.; Wu, S.; Chi, E.H. Values of User Exploration in Recommender Systems. In Proceedings of the RecSys, 2021; pp. 85–95. [Google Scholar]
- Li, N.; Ban, X.; Ling, C.; Gao, C.; Hu, L.; Jiang, P.; Gai, K.; Li, Y.; Liao, Q. Modeling User Fatigue for Sequential Recommendation. In Proceedings of the SIGIR, 2024; pp. 996–1005. [Google Scholar]
- Shah, S.S.; Asghar, Z. Dynamics of social influence on consumption choices: A social network representation. Heliyon 2023, 9. [Google Scholar] [CrossRef]
- Yoo, H.; Qiu, R.; Xu, C.; Wang, F.; Tong, H. Generalizable Recommender System During Temporal Popularity Distribution Shifts. In Proceedings of the SIGKDD, 2025; pp. 1833–1843. [Google Scholar]
- Wan, Z.; Liu, X.; Wang, B.; Qiu, J.; Li, B.; Guo, T.; Chen, G.; Wang, Y. Spatio-temporal contrastive learning-enhanced GNNs for session-based recommendation. ACM TOIS 2023, 42, 1–26. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.; Li, C.; Yu, Y. Lightweight Yet Fine-Grained: A Graph Capsule Convolutional Network with Subspace Alignment for Shared-Account Sequential Recommendation. Proceedings of the AAAI 2025, 13242–13250. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, H.; Chen, T.; Huang, Z.; Nguyen, Q.V.H.; Cui, L. PipAttack: Poisoning Federated Recommender Systems for Manipulating Item Promotion. In Proceedings of the WSDM, 2022; pp. 1415–1423. [Google Scholar]
- Anelli, V.W.; Deldjoo, Y.; Noia, T.D.; Merra, F.A. Adversarial Recommender Systems: Attack, Defense, and Advances. Recommender Systems Handbook 2022, 335–379. [Google Scholar]
- Wikipedia. GDPR fines and notices. 2024. Available online: https://en.wikipedia.org/wiki/GDPR_fines_and_notices.
- Cosley, D.; Lam, S.K.; Albert, I.; Konstan, J.A.; Riedl, J. Is seeing believing? How recommender system interfaces affect users’ opinions. In Proceedings of the CHI, 2003; pp. 585–592. [Google Scholar]
- Lin, Y.; Wang, C.; Chen, Z.; Ren, Z.; Xin, X.; Yan, Q.; de Rijke, M.; Cheng, X.; Ren, P. A Self-Correcting Sequential Recommender. In Proceedings of the CIKM, 2023; pp. 1283–1293. [Google Scholar]
- Fan, Z.; Liu, Z.; Wang, Y.; Wang, A.; Nazari, Z.; Zheng, L.; Peng, H.; Yu, P.S. Sequential Recommendation via Stochastic Self-Attention. In Proceedings of the TheWebConf, 2022; pp. 2036–2047. [Google Scholar]
- Zhang, S.; Yao, D.; Zhao, Z.; Chua, T.; Wu, F. CauseRec: Counterfactual User Sequence Synthesis for Sequential Recommendation. In Proceedings of the SIGIR, 2021; pp. 367–377. [Google Scholar]
- Hsiao, S.; Tsai, Y.; Li, C. Unsupervised Post-Time Fake Social Message Detection with Recommendation-aware Representation Learning. In Proceedings of the TheWebConf, 2022; pp. 232–235. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the ICLR, 2015. [Google Scholar]
- Goldberger, J.; Ben-Reuven, E. Training deep neural-networks using a noise adaptation layer. In Proceedings of the ICLR, 2017. [Google Scholar]
- Jindal, I.; Nokleby, M.; Chen, X. Learning deep networks from noisy labels with dropout regularization. In Proceedings of the ICDM, 2016; pp. 967–972. [Google Scholar]
- Han, B.; Yao, J.; Niu, G.; Zhou, M.; Tsang, I.; Zhang, Y.; Sugiyama, M. Masking: A new perspective of noisy supervision. In Proceedings of the NeurIPS, 2018. [Google Scholar]
- Yao, J.; Wang, J.; Tsang, I.W.; Zhang, Y.; Sun, J.; Zhang, C.; Zhang, R. Deep learning from noisy image labels with quality embedding. IEEE TIP, 2018; pp. 1909–1922. [Google Scholar]
- YouTube for Press. 2024. Available online: https://blog.youtube/press/.
- Amazon Statistics: Key Numbers and Fun Facts. 2024. Available online: https://amzscout.net/blog/amazon-statistics/.
- Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang, I.; Sugiyama, M. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In Proceedings of the NeurIPS, 2018; pp. 8536–8546. [Google Scholar]
- Yu, X.; Han, B.; Yao, J.; Niu, G.; Tsang, I.; Sugiyama, M. How does disagreement help generalization against label corruption? In Proceedings of the ICML, 2019; pp. 7164–7173. [Google Scholar]
- Lin, Y.; Wang, C.; Chen, Z.; Ren, Z.; Xin, X.; Yan, Q.; de Rijke, M.; Cheng, X.; Ren, P. A Self-Correcting Sequential Recommender. In Proceedings of the TheWebConf, 2023; pp. 1283–1293. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the ICLR, 2015. [Google Scholar]
- Salton, G.; Lesk, M.E. Computer Evaluation of Indexing and Text Processing. Journal of the ACM 1968, 15, 8–36. [Google Scholar] [CrossRef]
- Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Lian, T.; Ma, J. Neural Attentive Session-based Recommendation. In Proceedings of the CIKM, 2017; pp. 747–755. [Google Scholar]
- Liu, Q.; Zeng, Y.; Mokhosi, R.; Zhang, H. STAMP: short-term attention/memory priority model for session-based recommendation. In Proceedings of the SIGKDD, 2018; pp. 1831–1839. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the NeurIPS, 2017; pp. 5998–6008. [Google Scholar]
- Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer. In Proceedings of the CIKM, 2019; pp. 1441–1450. [Google Scholar]
- Fan, Z.; Liu, Z.; Wang, S.; Zheng, L.; Yu, P.S. Modeling Sequences as Distributions with Uncertainty for Sequential Recommendation. In Proceedings of the CIKM, 2021; pp. 3019–3023. [Google Scholar]
- Zhang, Y.; Wang, X.; Chen, H.; Zhu, W. Adaptive Disentangled Transformer for Sequential Recommendation. In Proceedings of the SIGKDD, 2023; pp. 3434–3445. [Google Scholar]
- Zhou, P.; Ye, Q.; Xie, Y.; Gao, J.; Wang, S.; Kim, J.B.; You, C.; Kim, S. Attention Calibration for Transformer-based Sequential Recommendation. In Proceedings of the CIKM, 2023; pp. 3595–3605. [Google Scholar]
- Yuan, J.; Song, Z.; Sun, M.; Wang, X.; Zhao, W.X. Dual Sparse Attention Network For Session-based Recommendation. In Proceedings of the AAAI, 2021; pp. 4635–4643. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the ICML, 2010; pp. 807–814. [Google Scholar]
- He, Z.; Zhao, H.; Lin, Z.; Wang, Z.; Kale, A.; McAuley, J.J. Locker: Locally Constrained Self-Attentive Sequential Recommendation. In Proceedings of the CIKM, 2021; pp. 3088–3092. [Google Scholar]
- Chen, H.; Lin, Y.; Pan, M.; Wang, L.; Yeh, C.M.; Li, X.; Zheng, Y.; Wang, F.; Yang, H. Denoising Self-Attentive Sequential Recommendation. In Proceedings of the RecSys, 2022; pp. 92–101. [Google Scholar]
- Yao, Z.; Chen, X.; Wang, S.; Dai, Q.; Li, Y.; Zhu, T.; Long, M. Recommender Transformers with Behavior Pathways. In Proceedings of the TheWebConf, 2024; pp. 3643–3654. [Google Scholar]
- Luo, Z.; Sheng, Z.; Zhang, T. Dual perspective denoising model for session-based recommendation. ESWA 2024, 249, 123845. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Pan, Z.; Zhou, Y.; Guan, C.; Sun, L.; Zhu, W. Automated Disentangled Sequential Recommendation with Large Language Models. ACM TOIS 2025, 43, 29:1–29:29. [Google Scholar] [CrossRef]
- Pei, W.; Yang, J.; Sun, Z.; Zhang, J.; Bozzon, A.; Tax, D.M.J. Interacting Attention-gated Recurrent Networks for Recommendation. In Proceedings of the CIKM, 2017; pp. 1459–1468. [Google Scholar]
- Liu, C.; Li, X.; Cai, G.; Dong, Z.; Zhu, H.; Shang, L. Noninvasive Self-attention for Side Information Fusion in Sequential Recommendation. In Proceedings of the AAAI, 2021; pp. 4249–4256. [Google Scholar]
- Liu, H.; Zhu, Y.; Wu, Z. Knowledge Graph-Based Behavior Denoising and Preference Learning for Sequential Recommendation. IEEE TKDE 2024, 36, 2490–2503. [Google Scholar] [CrossRef]
- Weston, J.; Chopra, S.; Bordes, A. Memory Networks. In Proceedings of the ICLR, 2015. [Google Scholar]
- Chen, X.; Xu, H.; Zhang, Y.; Tang, J.; Cao, Y.; Qin, Z.; Zha, H. Sequential Recommendation with User Memory Networks. In Proceedings of the WSDM, 2018; pp. 108–116. [Google Scholar]
- Ma, C.; Ma, L.; Zhang, Y.; Sun, J.; Liu, X.; Coates, M. Memory Augmented Graph Neural Networks for Sequential Recommendation. In Proceedings of the AAAI, 2020; pp. 5045–5052. [Google Scholar]
- Tan, Q.; Zhang, J.; Liu, N.; Huang, X.; Yang, H.; Zhou, J.; Hu, X. Dynamic Memory based Attention Network for Sequential Recommendation. In Proceedings of the AAAI, 2021; pp. 4384–4392. [Google Scholar]
- Hu, Y.; Liu, Y.; Miao, C.; Miao, Y. Memory Bank Augmented Long-tail Sequential Recommendation. In Proceedings of the CIKM, 2022; pp. 791–801. [Google Scholar]
- Huang, J.; Zhao, W.X.; Dou, H.; Wen, J.R.; Chang, E.Y. Improving sequential recommendation with knowledge-enhanced memory networks. In Proceedings of the SIGIR, 2018; pp. 505–514. [Google Scholar]
- Qu, S.; Yuan, F.; Guo, G.; Zhang, L.; Wei, W. CmnRec: Sequential Recommendations With Chunk-Accelerated Memory Network. IEEE TKDE 2023, 35, 3540–3550. [Google Scholar] [CrossRef]
- Lu, H.; Chai, Z.; Zheng, Y.; Chen, Z.; Xie, D.; Xu, P.; Zhou, X.; Wu, D. Large Memory Network for Recommendation. In Proceedings of the TheWebConf, 2025; pp. 1162–1166. [Google Scholar]
- Gers, F.A.; Schmidhuber, J.; Cummins, F.A. Learning to Forget: Continual Prediction with LSTM. Neural Computation 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Ma, C.; Kang, P.; Liu, X. Hierarchical gating networks for sequential recommendation. In Proceedings of the SIGKDD, 2019; pp. 825–833. [Google Scholar]
- Tang, J.; Belletti, F.; Jain, S.; Chen, M.; Beutel, A.; Xu, C.; H Chi, E. Towards neural mixture recommender for long range dependent user sequences. In Proceedings of the TheWebConf, 2019; pp. 1782–1793. [Google Scholar]
- Zhao, K.; Zhang, Y.; Yin, H.; Wang, J.; Zheng, K.; Zhou, X.; Xing, C. Discovering Subsequence Patterns for Next POI Recommendation. In Proceedings of the IJCAI, 2020; pp. 3216–3222. [Google Scholar]
- Wang, M.; Zhang, S.; Guo, R.; Wang, W.; Wei, X.; Liu, Z.; Yin, H.; Chang, Y.; Zhao, X. STAR-Rec: Making Peace with Length Variance and Pattern Diversity in Sequential Recommendation. In Proceedings of the SIGIR, 2025; pp. 1530–1540. [Google Scholar]
- Ma, M.; Ren, P.; Lin, Y.; Chen, Z.; Ma, J.; de Rijke, M. π-Net: A Parallel Information-sharing Network for Shared-account Cross-domain Sequential Recommendations. In Proceedings of the SIGIR, 2019; pp. 685–694. [Google Scholar]
- He, Y.; Zhang, Y.; Liu, W.; Caverlee, J. Consistency-Aware Recommendation for User-Generated Item List Continuation. In Proceedings of the WSDM, 2020; pp. 250–258. [Google Scholar]
- Chen, C.; Li, D.; Yan, J.; Yang, X. Modeling Dynamic User Preference via Dictionary Learning for Sequential Recommendation. IEEE TKDE 2022, 34, 5446–5458. [Google Scholar] [CrossRef]
- Mi, F.; Faltings, B. Memory Augmented Neural Model for Incremental Session-based Recommendation. In Proceedings of the IJCAI, 2020; pp. 2169–2176. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the ICLR, 2017. [Google Scholar]
- Guo, X.; Shi, C.; Liu, C. Intention Modeling from Ordered and Unordered Facets for Sequential Recommendation. In Proceedings of the TheWebConf, 2020; pp. 1127–1137. [Google Scholar]
- Liu, X.; Li, Z.; Gao, Y.; Yang, J.; Cao, T.; Wang, Z.; Yin, B.; Song, Y. Enhancing User Intent Capture in Session-Based Recommendation with Attribute Patterns. In Proceedings of the NeurIPS, 2023. [Google Scholar]
- Fu, H.; Qin, Z.; Yang, S.; Zhang, H.; Lu, B.; Li, S.; Huang, T.; Lui, J.C.S. Time Matters: Enhancing Sequential Recommendations with Time-Guided Graph Neural ODEs. In Proceedings of the SIGKDD, 2025; pp. 637–648. [Google Scholar]
- Zhang, Z.; Wang, X.; Chen, H.; Li, H.; Zhu, W. Disentangled Dynamic Graph Attention Network for Out-of-Distribution Sequential Recommendation. ACM TOIS 2025, 43, 19:1–19:42. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, T.; Kuang, K.; Feng, F.; Yu, J.; Ma, J.; Zhao, Z.; Zhu, J.; Yang, H.; Chua, T.; et al. SLED: Structure Learning based Denoising for Recommendation. ACM TOIS 2023, 42, 43:1–43:31. [Google Scholar] [CrossRef]
- Ye, Y.; Xia, L.; Huang, C. Graph Masked Autoencoder for Sequential Recommendation. In Proceedings of the SIGIR, 2023; pp. 321–330. [Google Scholar]
- Wang, Z.; Zhu, Y.; Wang, C.; Zhao, X.; Li, B.; Yu, J.; Tang, F. Graph Diffusion-Based Representation Learning for Sequential Recommendation. IEEE TKDE 2024, 36, 8395–8407. [Google Scholar] [CrossRef]
- Zeng, X.; Li, S.; Zhang, Z.; Jin, L.; Guo, Z.; Wei, K. RAIN: Reconstructed-aware in-context enhancement with graph denoising for session-based recommendation. Elsevier Neural Networks 2025, 184, 107056. [Google Scholar] [CrossRef]
- Sang, C.; Gong, M.; Liao, S.; Zhou, W. MA-GCL4SR: Improving Graph Contrastive Learning-Based Sequential Recommendation with Model Augmentation. ACM TKDD 2025, 19, 1–21. [Google Scholar] [CrossRef]
- Gabor, D. Theory of communication. Journal of the Institution of Electrical Engineers 1946, 93, 429–441. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, H.; Zhao, W.X.; Wen, J.R. Filter-enhanced MLP is All You Need for Sequential Recommendation. In Proceedings of the TheWebConf, 2022; pp. 2388–2399. [Google Scholar]
- Du, X.; Yuan, H.; Zhao, P.; Fang, J.; Liu, G.; Liu, Y.; Sheng, V.S.; Zhou, X. Contrastive Enhanced Slide Filter Mixer for Sequential Recommendation. In Proceedings of the ICDE, 2023; pp. 2673–2685. [Google Scholar]
- Shin, Y.; Choi, J.; Wi, H.; Park, N. An Attentive Inductive Bias for Sequential Recommendation beyond the Self-Attention. In Proceedings of the AAAI, 2024; pp. 8984–8992. [Google Scholar]
- Xiao, S.; Zhang, J.; Tang, C.; Huang, Z. Frequency-Domain Disentanglement-Fusion and Dual Contrastive Learning for Sequential Recommendation. In Proceedings of the CIKM, 2025; pp. 3498–3508. [Google Scholar]
- Long, H.; Huang, B.; Lu, J. Learnable Filter with Decoupling Fusion Method for Sequential Recommendation. In Proceedings of the SMC, 2024; pp. 2486–2492. [Google Scholar]
- Han, Y.; Wang, H.; Wang, K.; Wu, L.; Li, Z.; Guo, W.; Liu, Y.; Lian, D.; Chen, E. Efficient Noise-Decoupling for Multi-Behavior Sequential Recommendation. In Proceedings of the TheWebConf, 2024; pp. 3297–3306. [Google Scholar]
- Wang, H.; Han, Y.; Wang, K.; Cheng, K.; Wang, Z.; Guo, W.; Liu, Y.; Lian, D.; Chen, E. Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation. CoRR 2024, abs/2408.11372. [Google Scholar]
- Yu, D.; Lv, C.; Du, X.; Jiang, L.; Yin, Q.; Tong, W.; Zheng, X.; Deng, S. Cost-Effective On-Device Sequential Recommendation with Spiking Neural Networks. In Proceedings of the IJCAI, 2025; pp. 3579–3587. [Google Scholar]
- Xia, J.; Li, D.; Gu, H.; Lu, T.; Zhang, P.; Shang, L.; Gu, N. Oracle-guided Dynamic User Preference Modeling for Sequential Recommendation. In Proceedings of the WSDM, 2025; pp. 363–372. [Google Scholar]
- Kim, H.; Choi, M.; Lee, S.; Baek, I.; Lee, J. DIFF: Dual Side-Information Filtering and Fusion for Sequential Recommendation. In Proceedings of the SIGIR, 2025; pp. 1624–1633. [Google Scholar]
- Huang, Y.; Lu, J.; Li, K.; Zhang, G. Learning a Wavelet Neural Filter with Mamba for Sequential Recommendation. In Proceedings of the 2025 IEEE Symposium on Computational Intelligence in Image, Signal Processing and Synthetic Media (CISM), 2025; pp. 1–7. [Google Scholar]
- Heo, B.; Kim, J. WaveRec: Is Wavelet Transform a Better Alternative to Fourier Transform for Sequential Recommendation? In Proceedings of the Proceedings of the 2025 International ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR), 2025; pp. 497–502. [Google Scholar]
- Xu, H.; Yuan, H.; Liu, G.; Fang, J.; Zhao, L.; Zhao, P. Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation. In Proceedings of the AAAI, 2026. [Google Scholar]
- Du, X.; Yuan, H.; Zhao, P.; Qu, J.; Zhuang, F.; Liu, G.; Liu, Y.; Sheng, V.S. Frequency Enhanced Hybrid Attention Network for Sequential Recommendation. In Proceedings of the SIGIR, 2023; pp. 78–88. [Google Scholar]
- Baek, I.; Yoon, M.; Park, S.; Lee, J. MUFFIN: Mixture of User-Adaptive Frequency Filtering for Sequential Recommendation. In Proceedings of the CIKM, 2025. [Google Scholar]
- Su, Y.; Cai, X.; Li, T. FICLRec: Frequency enhanced intent contrastive learning for sequential recommendation. Elsevier IPM 2025, 62, 104231. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Guo, W.; Zhang, L.; Yang, W.; Yu, R.; Liu, Y.; Lian, D.; Chen, E. Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction. In Proceedings of the SIGKDD, 2025; pp. 2745–2755. [Google Scholar]
- Li, Z.; Sun, A.; Li, C. Diffurec: A diffusion model for sequential recommendation. ACM TOIS 2023, 42, 1–28. [Google Scholar] [CrossRef]
- Hou, Y.; Park, J.; Shin, W. Collaborative Filtering Based on Diffusion Models: Unveiling the Potential of High-Order Connectivity. In Proceedings of the SIGIR, 2024; pp. 1360–1369. [Google Scholar]
- Wang, Y.; Liu, Z.; Yang, L.; Yu, P.S. Conditional Denoising Diffusion for Sequential Recommendation. Proceedings of the PAKDD 2024, Vol. 14649, 156–169. [Google Scholar]
- Ma, H.; Xie, R.; Meng, L.; Yang, Y.; Sun, X.; Kang, Z. SeeDRec: Sememe-based Diffusion for Sequential Recommendation. In Proceedings of the IJCAI, 2024; pp. 2270–2278. [Google Scholar]
- Cui, X.; Lu, W.; Tong, Y.; Li, Y.; Zhao, Z. Multi-Modal Multi-Behavior Sequential Recommendation with Conditional Diffusion-Based Feature Denoising. In Proceedings of the SIGIR, 2025; pp. 1593–1602. [Google Scholar]
- Mao, W.; Yang, Z.; Wu, J.; Liu, H.; Yuan, Y.; Wang, X.; He, X. Addressing Missing Data Issue for Diffusion-based Recommendation. In Proceedings of the SIGIR, 2025; pp. 2152–2161. [Google Scholar]
- Ma, H.; Xie, R.; Meng, L.; Chen, X.; Zhang, X.; Lin, L.; Kang, Z. Plug-In Diffusion Model for Sequential Recommendation. In Proceedings of the AAAI, 2024; pp. 8886–8894. [Google Scholar]
- Liu, F.; Zou, L.; Zhao, X.; Tang, M.; Dong, L.; Luo, D.; Luo, X.; Li, C. Flow Matching Based Sequential Recommender Model. In Proceedings of the IJCAI, 2025; pp. 3108–3116. [Google Scholar]
- Chen, J.; Xu, Y.; Jiang, Y. Unlocking the Power of Diffusion Models in Sequential Recommendation: A Simple and Effective Approach. In Proceedings of the SIGKDD, 2025; pp. 155–166. [Google Scholar]
- Cai, Z.; Wang, S.; Chu, V.W.; Naseem, U.; Wang, Y.; Chen, F. Unleashing the Potential of Diffusion Models Towards Diversified Sequential Recommendations. In Proceedings of the SIGIR, 2025; pp. 1476–1486. [Google Scholar]
- Mao, W.; Liu, S.; Liu, H.; Liu, H.; Li, X.; Hu, L. Distinguished Quantized Guidance for Diffusion-based Sequence Recommendation. In Proceedings of the TheWebConf, 2025; pp. 425–435. [Google Scholar]
- Sun, Y.; Wang, B.; Sun, Z.; Yang, X. Does Every Data Instance Matter? Enhancing Sequential Recommendation by Eliminating Unreliable Data. In Proceedings of the IJCAI, 2021; pp. 1579–1585. [Google Scholar]
- Sun, Y.; Yang, X.; Sun, Z.; Wang, B. BERD+: A Generic Sequential Recommendation Framework by Eliminating Unreliable Data with Item- and Attribute-level Signals. ACM TOIS 2024, 42, 41:1–41:33. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, Q.; Wu, Y.; Sun, F.; Shen, H.; Cheng, X. Personalized Denoising Implicit Feedback for Robust Recommender System. In Proceedings of the TheWebConf, 2025; pp. 4470–4481. [Google Scholar]
- Xin, H.; Xiong, Q.; Liu, Z.; Mei, S.; Yan, Y.; Yu, S.; Wang, S.; Gu, Y.; Yu, G.; Xiong, C. ConsRec: Denoising Sequential Recommendation through User-Consistent Preference Modeling. CoRR 2025, abs/2505.22130. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. MIT Press JMLR 2020, 21, 1–67. [Google Scholar]
- Zhang, K.; Cao, Q.; Wu, Y.; Sun, F.; Shen, H.; Cheng, X. LoRec: Combating Poisons with Large Language Model for Robust Sequential Recommendation. In Proceedings of the SIGIR, 2024; pp. 1733–1742. [Google Scholar]
- Yin, M.; Wang, H.; Guo, W.; Liu, Y.; Zhang, S.; Zhao, S.; Lian, D.; Chen, E. Dataset Regeneration for Sequential Recommendation. In Proceedings of the SIGKDD, 2024; pp. 3954–3965. [Google Scholar]
- Wang, B.; Liu, F.; Zhang, C.; Chen, J.; Wu, Y.; Zhou, S.; Lou, X.; Wang, J.; Feng, Y.; Chen, C.; et al. LLM4DSR: Leveraging Large Language Model for Denoising Sequential Recommendation. ACM TOIS 2025, 44. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, X.; Sun, Z.; Wang, Y.; Wang, B.; Qu, X. LLM4RSR: Large Language Models as Data Correctors for Robust Sequential Recommendation. Proceedings of the AAAI 2025, 12604–12612. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Y.; Wang, M.; Zhang, C.; Zhao, X. Empowering Denoising Sequential Recommendation with Large Language Model Embeddings. In Proceedings of the CIKM, 2025. [Google Scholar]
- Hyun, D.; Park, C.; Cho, J.; Yu, H. Beyond Learning from Next Item: Sequential Recommendation via Personalized Interest Sustainability. In Proceedings of the CIKM, 2022; pp. 812–821. [Google Scholar]
- Liu, X.; Lu, X.; Cao, Y.; Li, Y. Augmenting Short Sequence for Robust Session-based Recommendation. In Proceedings of the 2024 5th International Conference on Computers and Artificial Intelligence Technology (CAIT), 2024; pp. 260–265. [Google Scholar]
- Bacciu, A.; Siciliano, F.; Tonellotto, N.; Silvestri, F. Integrating Item Relevance in Training Loss for Sequential Recommender Systems. In Proceedings of the RecSys, 2023; pp. 1114–1119. [Google Scholar]
- Wu, Z.; Wang, X.; Chen, H.; Li, K.; Han, Y.; Sun, L.; Zhu, W. Diff4Rec: Sequential Recommendation with Curriculum-scheduled Diffusion Augmentation. In Proceedings of the ACM MM, 2023; pp. 9329–9335. [Google Scholar]
- Liu, Q.; Yan, F.; Zhao, X.; Du, Z.; Guo, H.; Tang, R.; Tian, F. Diffusion Augmentation for Sequential Recommendation. In Proceedings of the CIKM, 2023; pp. 1576–1586. [Google Scholar]
- Zhang, C.; Han, Q.; Chen, R.; Zhao, X.; Tang, P.; Song, H. SSDRec: Self-Augmented Sequence Denoising for Sequential Recommendation. In Proceedings of the ICDE, 2024; pp. 803–815. [Google Scholar]
- Sun, X.; Sun, F.; Wang, Y.; Song, S.; Tang, W.; Wang, S. Adaptive in-context expert network with hierarchical data augmentation for sequential recommendation. Elsevier KBS 2025, 326, 114061. [Google Scholar] [CrossRef]
- Dang, Y.; Liu, Y.; Yang, E.; Huang, M.; Guo, G.; Zhao, J.; Wang, X. Data Augmentation as Free Lunch: Exploring the Test-Time Augmentation for Sequential Recommendation. In Proceedings of the SIGIR, 2025; pp. 1466–1475. [Google Scholar]
- Yue, Z.; Zeng, H.; Kou, Z.; Shang, L.; Wang, D. Defending Substitution-Based Profile Pollution Attacks on Sequential Recommenders. In Proceedings of the RecSys, 2022; pp. 59–70. [Google Scholar]
- Zhou, K.; Wang, H.; Wen, J.; Zhao, W.X. Enhancing Multi-View Smoothness for Sequential Recommendation Models. ACM TOIS 2023, 41, 107:1–107:27. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, Q.; Wu, Y.; Sun, F.; Shen, H.; Cheng, X. Understanding and Improving Adversarial Collaborative Filtering for Robust Recommendation. In Proceedings of the NeurIPS, 2024. [Google Scholar]
- Zhang, K.; Cao, Q.; Wu, Y.; Sun, F.; Shen, H.; Cheng, X. Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for Robust Recommender System. In Proceedings of the RecSys, 2024; pp. 680–689. [Google Scholar]
- Qian, F.; Chen, W.; Chen, H.; Cui, Y.; Zhao, S.; Zhang, Y. Understanding the Robustness of Deep Recommendation under Adversarial Attacks. ACM TKDD 2025, 19, 129:1–129:46. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, K.; Lai, K.; Hu, X.; Wang, F.; Yang, H. Adversarial Graph Perturbations for Recommendations at Scale. In Proceedings of the SIGIR, 2022; pp. 1854–1858. [Google Scholar]
- Qin, Q.; Luo, Y.; Chu, Z. DARTS: A Dual-View Attack Framework for Targeted Manipulation in Federated Sequential Recommendation. CoRR 2025, abs/2507.01383. [Google Scholar]
- Zhang, J.; Hao, B.; Chen, B.; Li, C.; Chen, H.; Sun, J. Hierarchical Reinforcement Learning for Course Recommendation in MOOCs. In Proceedings of the AAAI, 2019; pp. 435–442. [Google Scholar]
- Du, Q.; Yu, L.; Li, H.; Leng, Y.; Ou, N. Denoising-Oriented Deep Hierarchical Reinforcement Learning for Next-Basket Recommendation. In Proceedings of the ICASSP, 2022; pp. 4093–4097. [Google Scholar]
- Li, Y.; Xiong, H.; Kong, L.; Zhang, R.; Xu, F.; Chen, G.; Li, M. MHRR: MOOCs Recommender Service With Meta Hierarchical Reinforced Ranking. IEEE TSC 2023, 16, 4467–4480. [Google Scholar] [CrossRef]
- Antaris, S.; Rafailidis, D. Sequence Adaptation via Reinforcement Learning in Recommender Systems. In Proceedings of the RecSys, 2021; pp. 714–718. [Google Scholar]
- Zhao, P.; Luo, C.; Zhou, C.; Qiao, B.; He, J.; Zhang, L.; Lin, Q. RLNF: Reinforcement Learning based Noise Filtering for Click-Through Rate Prediction. In Proceedings of the SIGIR, 2021; pp. 2268–2272. [Google Scholar]
- Wang, P.; Fan, Y.; Xia, L.; Zhao, W.X.; Niu, S.; Huang, J.X. KERL: A Knowledge-Guided Reinforcement Learning Model for Sequential Recommendation. In Proceedings of the SIGIR, 2020; pp. 209–218. [Google Scholar]
- Li, K.; Wang, P.; Li, C. Multi-agent rl-based information selection model for sequential recommendation. In Proceedings of the SIGIR, 2022; pp. 1622–1631. [Google Scholar]
- Namkoong, H.; Duchi, J.C. Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences. In Proceedings of the NeurIPS, 2016; pp. 2208–2216. [Google Scholar]
- Wen, H.; Yi, X.; Yao, T.; Tang, J.; Hong, L.; Chi, E.H. Distributionally-robust Recommendations for Improving Worst-case User Experience. In Proceedings of the TheWebConf, 2022; pp. 3606–3610. [Google Scholar]
- Liao, Y.; Yang, Y.; Hou, M.; Wu, L.; Xu, H.; Liu, H. Mitigating Distribution Shifts in Sequential Recommendation: An Invariance Perspective. Proceedings of the SIGIR 2025, 1603–1613. [Google Scholar]
- Yang, Z.; He, X.; Zhang, J.; Wu, J.; Xin, X.; Chen, J.; Wang, X. A Generic Learning Framework for Sequential Recommendation with Distribution Shifts. In Proceedings of the SIGIR, 2023; pp. 331–340. [Google Scholar]
- Zhou, R.; Wu, X.; Qiu, Z.; Zheng, Y.; Chen, X. Distributionally robust sequential recommendation. In Proceedings of the SIGIR, 2023; pp. 279–288. [Google Scholar]
- Hu, K.; Li, L.; Xie, Q.; Liu, J.; Tao, X.; Xu, G. Decoupled Progressive Distillation for Sequential Prediction with Interaction Dynamics. ACM TOIS 2024, 42, 72:1–72:35. [Google Scholar] [CrossRef]
- Neupane, K.P.; Zheng, E.; Yu, Q. Evidential Stochastic Differential Equations for Time-Aware Sequential Recommendation. In Proceedings of the NeurIPS, 2024. [Google Scholar]
- Lin, X.; Pan, W.; Ming, Z. Towards Interest Drift-driven User Representation Learning in Sequential Recommendation. In Proceedings of the SIGIR, 2025; pp. 1541–1551. [Google Scholar]
- Yang, Y.; Huang, C.; Xia, L.; Huang, C.; Luo, D.; Lin, K. Debiased Contrastive Learning for Sequential Recommendation. In Proceedings of the TheWebConf, 2023; pp. 1063–1073. [Google Scholar]
- Du, H.; Yuan, H.; Zhao, P.; Wang, D.; Sheng, V.S.; Liu, Y.; Liu, G.; Zhao, L. Feature-Aware Contrastive Learning With Bidirectional Transformers for Sequential Recommendation. IEEE TKDE 2024, 36, 8192–8205. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, E.; Liang, Y.; Zhao, J.; Guo, G.; Wang, X. Symmetric Graph Contrastive Learning against Noisy Views for Recommendation. ACM TOIS 2025, 43, 80:1–80:28. [Google Scholar] [CrossRef]
- Sang, L.; Huang, M.; Wang, Y.; Zhang, Y.; Wu, X. Bottlenecked Heterogeneous Graph Contrastive Learning for Robust Recommendation. ACM TOIS 2025, 43, 1–36. [Google Scholar] [CrossRef]
- Tong, X.; Wang, P.; Li, C.; Xia, L.; Niu, S. Pattern-enhanced Contrastive Policy Learning Network for Sequential Recommendation. In Proceedings of the IJCAI, 2021; pp. 1593–1599. [Google Scholar]
- Qin, Y.; Wang, P.; Li, C. The World is Binary: Contrastive Learning for Denoising Next Basket Recommendation. In Proceedings of the SIGIR, 2021; pp. 859–868. [Google Scholar]
- Chen, Y.; Liu, Z.; Li, J.; McAuley, J.J.; Xiong, C. Intent Contrastive Learning for Sequential Recommendation. In Proceedings of the TheWebConf, 2022; pp. 2172–2182. [Google Scholar]
- He, X.; Wei, T.; He, J. Robust Basket Recommendation via Noise-tolerated Graph Contrastive Learning. In Proceedings of the CIKM, 2023; pp. 709–719. [Google Scholar]
- Xie, X.; Sun, F.; Liu, Z.; Wu, S.; Gao, J.; Zhang, J.; Ding, B.; Cui, B. Contrastive learning for sequential recommendation. In Proceedings of the ICDE, 2022; pp. 1259–1273. [Google Scholar]
- Qin, X.; Yuan, H.; Zhao, P.; Liu, G.; Zhuang, F.; Sheng, V.S. Intent Contrastive Learning with Cross Subsequences for Sequential Recommendation. In Proceedings of the WSDM, 2024; pp. 548–556. [Google Scholar]
- Wang, W.; Ma, J.; Zhang, Y.; Zhang, K.; Jiang, J.; Yang, Y.; Zhou, Y.; Zhang, Z. Intent Oriented Contrastive Learning for Sequential Recommendation. Proceedings of the AAAI 2025, 12748–12756. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, Q.; Sun, F.; Liu, X. AsarRec: Adaptive Sequential Augmentation for Robust Self-supervised Sequential Recommendation. arXiv 2025, arXiv:2512.14047. [Google Scholar]
- Qiu, R.; Huang, Z.; Yin, H.; Wang, Z. Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. In Proceedings of the WSDM, 2022; pp. 813–823. [Google Scholar]
- Wang, Y.; Zhang, H.; Liu, Z.; Yang, L.; Yu, P.S. ContrastVAE: Contrastive Variational AutoEncoder for Sequential Recommendation. In Proceedings of the CIKM, 2022; pp. 2056–2066. [Google Scholar]
- Xia, L.; Huang, C.; Zhang, C. Self-Supervised Hypergraph Transformer for Recommender Systems. In Proceedings of the SIGKDD, 2022; pp. 2100–2109. [Google Scholar]
- Yu, Y.; Liu, Q.; Zhang, K.; Zhang, Y.; Song, C.; Hou, M.; Yuan, Y.; Ye, Z.; Zhang, Z.; Yu, S.L. AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking. In Proceedings of the NeurIPS, 2023. [Google Scholar]
- Qin, X.; Yuan, H.; Zhao, P.; Fang, J.; Zhuang, F.; Liu, G.; Liu, Y.; Sheng, V.S. Meta-optimized Contrastive Learning for Sequential Recommendation. In Proceedings of the SIGIR, 2023; pp. 89–98. [Google Scholar]
- Fan, Z.; Liu, Z.; Peng, H.; Yu, P.S. Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation. In Proceedings of the TheWebConf, 2023; pp. 1375–1385. [Google Scholar]
- Hao, Y.; Zhao, P.; Xian, X.; Liu, G.; Zhao, L.; Liu, Y.; Sheng, V.S.; Zhou, X. Learnable Model Augmentation Contrastive Learning for Sequential Recommendation. IEEE TKDE 2024, 36, 3963–3976. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Xu, H.; Zhang, J.; Zhang, Y.; Zhao, W.X.; Wen, J. Data Augmented Sequential Recommendation Based on Counterfactual Thinking. IEEE TKDE 2023, 35, 9181–9194. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Xu, H.; Chen, X.; Zhang, Y.; Zhao, W.X.; Wen, J. Counterfactual Data-Augmented Sequential Recommendation. In Proceedings of the SIGIR, 2021; pp. 347–356. [Google Scholar]
- Chen, J.; Guan, H.; Li, H.; Zhang, F.; Huang, L.; Pang, G.; Jin, X. PACIFIC: Enhancing Sequential Recommendation via Preference-aware Causal Intervention and Counterfactual Data Augmentation. In Proceedings of the CIKM, 2024; pp. 249–258. [Google Scholar]
- Tang, S.; Lin, S.; Ma, J.; Zhang, X. CoDeR: Counterfactual Demand Reasoning for Sequential Recommendation. Proceedings of the AAAI 2025, 12649–12657. [Google Scholar] [CrossRef]
- Lin, S.; Tang, S.; Zhang, X.; Ma, J.; Wang, Z. CoDeR+: Interest-aware Counterfactual Reasoning for Sequential Recommendation. ACM TOIS 2025. Just Accepted. [Google Scholar]
- Liu, X.; Yuan, J.; Zhou, Y.; Li, J.; Huang, F.; Ai, W. CSRec: Rethinking Sequential Recommendation from A Causal Perspective. In Proceedings of the SIGIR, 2025; pp. 1562–1571. [Google Scholar]
- Zhou, H.; Xu, J.; Zhu, Q.; Liu, C. Disentangled Graph Debiasing for Next POI Recommendation. In Proceedings of the SIGIR, 2025; pp. 1779–1788. [Google Scholar]
- Fan, L.; Pu, J.; Zhang, R.; Wu, X. Neighborhood-based Hard Negative Mining for Sequential Recommendation. In Proceedings of the SIGIR, 2023; pp. 2042–2046. [Google Scholar]
- Kim, K.; Hyun, D.; Yun, S.; Park, C. MELT: Mutual Enhancement of Long-Tailed User and Item for Sequential Recommendation. In Proceedings of the SIGIR, 2023; pp. 68–77. [Google Scholar]
- Zhang, C.; Du, Y.; Zhao, X.; Han, Q.; Chen, R.; Li, L. Hierarchical Item Inconsistency Signal Learning for Sequence Denoising in Sequential Recommendation. In Proceedings of the CIKM, 2022; pp. 2508–2518. [Google Scholar]
- Bian, S.; Zhao, W.X.; Zhou, K.; Cai, J.; He, Y.; Yin, C.; Wen, J. Contrastive Curriculum Learning for Sequential User Behavior Modeling via Data Augmentation. In Proceedings of the CIKM, 2021; pp. 3737–3746. [Google Scholar]
- Chen, H.; Chen, Y.; Wang, X.; Xie, R.; Wang, R.; Xia, F.; Zhu, W. Curriculum Disentangled Recommendation with Noisy Multi-feedback. In Proceedings of the NeurIPS, 2021; pp. 26924–26936. [Google Scholar]
- Wang, Y.; Ge, X.; Chen, X.; Xie, R.; Yan, S.; Zhang, X.; Chen, Z.; Ma, J.; Xin, X. Exploration and Exploitation of Hard Negative Samples for Cross-Domain Sequential Recommendation. In Proceedings of the WSDM, 2025; pp. 669–677. [Google Scholar]
- Steck, H. Calibrated recommendations. In Proceedings of the RecSys, 2018; pp. 154–162. [Google Scholar]
- Seymen, S.; Abdollahpouri, H.; Malthouse, E.C. A Constrained Optimization Approach for Calibrated Recommendations. In Proceedings of the RecSys, 2021; pp. 607–612. [Google Scholar]
- Chambolle, A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 2004, 20, 89–97. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, Z.; Caverlee, J. Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with Evolving Interests. In Proceedings of the TheWebConf, 2021; pp. 888–899. [Google Scholar]
- Abdollahpouri, H.; Nazari, Z.; Gain, A.; Gibson, C.; Dimakopoulou, M.; Anderton, J.; Carterette, B.A.; Lalmas, M.; Jebara, T. Calibrated Recommendations as a Minimum-Cost Flow Problem. In Proceedings of the WSDM, 2023; pp. 571–579. [Google Scholar]
- Jeon, H.; Yoon, S.; McAuley, J.J. Calibration-Disentangled Learning and Relevance-Prioritized Reranking for Calibrated Sequential Recommendation. In Proceedings of the CIKM, 2024; pp. 973–982. [Google Scholar]
- Chen, J.; Wu, W.; Shi, L.; Ji, Y.; Hu, W.; Chen, X.; Zheng, W.; He, L. DACSR: Decoupled-Aggregated End-to-End Calibrated Sequential Recommendation. In Springer Applied Intelligence; 2022. [Google Scholar]
- Chen, J.; Wu, W.; Shi, L.; Zheng, W.; He, L. Long-tail session-based recommendation from calibration. Springer Applied Intelligence 2023, 4685–4702. [Google Scholar] [CrossRef]
- Lesota, O.; Bajko, A.; Walder, M.; Wenzel, M.; Tommasel, A.; Schedl, M. Fine-tuning for Inference-efficient Calibrated Recommendations. In Proceedings of the RecSys, 2025; pp. 1187–1192. [Google Scholar]
- Li, C.; Liu, Z.; Wu, M.; Xu, Y.; Zhao, H.; Huang, P.; Kang, G.; Chen, Q.; Li, W.; Lee, D.L. Multi-Interest Network with Dynamic Routing for Recommendation at Tmall. In Proceedings of the CIKM, 2019; pp. 2615–2623. [Google Scholar]
- Cen, Y.; Zhang, J.; Zou, X.; Zhou, C.; Yang, H.; Tang, J. Controllable Multi-Interest Framework for Recommendation. In Proceedings of the SIGKDD, 2020; pp. 2942–2951. [Google Scholar]
- LaLonde, R.; Bagci, U. Capsules for Object Segmentation. arXiv 2018, arXiv:1804.04241. [Google Scholar]
- Wang, S.; Hu, L.; Wang, Y.; Sheng, Q.Z.; Orgun, M.A.; Cao, L. Modeling Multi-Purpose Sessions for Next-Item Recommendations via Mixture-Channel Purpose Routing Networks. In Proceedings of the IJCAI, 2019; pp. 3771–3777. [Google Scholar]
- Li, S.; Yang, D.; Zhang, B. MRIF: Multi-resolution Interest Fusion for Recommendation. In Proceedings of the SIGIR, 2020; pp. 1765–1768. [Google Scholar]
- Tian, Y.; Chang, J.; Niu, Y.; Song, Y.; Li, C. When Multi-Level Meets Multi-Interest: A Multi-Grained Neural Model for Sequential Recommendation. In Proceedings of the SIGIR, 2022; pp. 1632–1641. [Google Scholar]
- Lee, J.; Yun, J.; Kang, U. BaM: AnEnhanced Training Scheme for Balanced and Comprehensive Multi-interest Learning. In Proceedings of the SIGKDD, 2024. [Google Scholar]
- Chen, W.; Ren, P.; Cai, F.; Sun, F.; de Rijke, M. Improving End-to-End Sequential Recommendations with Intent-aware Diversification. In Proceedings of the CIKM, 2020; pp. 175–184. [Google Scholar]
- Chen, W.; Ren, P.; Cai, F.; Sun, F.; De Rijke, M. Multi-interest diversification for end-to-end sequential recommendation. ACM TOIS 2021, 40, 1–30. [Google Scholar] [CrossRef]
- Li, B.; Jin, B.; Song, J.; Yu, Y.; Zheng, Y.; Zhou, W. Improving Micro-video Recommendation via Contrastive Multiple Interests. In Proceedings of the SIGIR, 2022; pp. 2377–2381. [Google Scholar]
- Zhang, S.; Yang, L.; Yao, D.; Lu, Y.; Feng, F.; Zhao, Z.; Chua, T.; Wu, F. Re4: Learning to Re-contrast, Re-attend, Re-construct for Multi-interest Recommendation. In Proceedings of the TheWebConf, 2022; pp. 2216–2226. [Google Scholar]
- Wang, C.; Wang, Z.; Liu, Y.; Ge, Y.; Ma, W.; Zhang, M.; Liu, Y.; Feng, J.; Deng, C.; Ma, S. Target Interest Distillation for Multi-Interest Recommendation. In Proceedings of the CIKM, 2022; pp. 2007–2016. [Google Scholar]
- Xie, Y.; Gao, J.; Zhou, P.; Ye, Q.; Hua, Y.; Kim, J.B.; Wu, F.; Kim, S. Rethinking Multi-Interest Learning for Candidate Matching in Recommender Systems. In Proceedings of the RecSys, 2023; pp. 283–293. [Google Scholar]
- Du, Y.; Wang, Z.; Sun, Z.; Ma, Y.; Liu, H.; Zhang, J. Disentangled Multi-interest Representation Learning for Sequential Recommendation. In Proceedings of the SIGKDD, 2024; pp. 677–688. [Google Scholar]
- Wang, J.; Zeng, Z.; Wang, Y.; Wang, Y.; Lu, X.; Li, T.; Yuan, J.; Zhang, R.; Zheng, H.; Xia, S. MISSRec: Pre-training and Transferring Multi-modal Interest-aware Sequence Representation for Recommendation. In Proceedings of the ACM MM, 2023; pp. 6548–6557. [Google Scholar]
- Liu, Y.; Zhang, X.; Zou, M.; Feng, Z. Co-occurrence Embedding Enhancement for Long-tail Problem in Multi-Interest Recommendation. In Proceedings of the RecSys, 2023; pp. 820–825. [Google Scholar]
- Yan, J.; Jiang, L.; Cui, J.; Zhao, Z.; Bin, X.; Zhang, F.; Liu, Z. Trinity: Syncretizing Multi-/Long-Tail/Long-Term Interests All in One. In Proceedings of the SIGKDD, 2024; pp. 6095–6104. [Google Scholar]
- Zheng, Y.; Wang, G.; Liu, Y.; Lin, L. Diversity Matters: User-Centric Multi-Interest Learning for Conversational Movie Recommendation. In Proceedings of the ACM MM, 2024; pp. 9515–9524. [Google Scholar]
- Liu, Y.; Zhang, X.; Zou, M.; Feng, Z. Attribute Simulation for Item Embedding Enhancement in Multi-interest Recommendation. In Proceedings of the WSDM, 2024; pp. 482–491. [Google Scholar]
- Hu, S.; Wu, W.; Tang, Z.; Huan, Z.; Wang, L.; Zhang, X.; Zhou, J.; Zou, L.; Li, C. HORAE: Temporal Multi-Interest Pre-training for Sequential Recommendation. ACM TOIS 2025, 43, 88:1–88:29. [Google Scholar] [CrossRef]
- Karypis, G. Evaluation of item-based top-n recommendation algorithms. In Proceedings of the CIKM, 2001; pp. 247–254. [Google Scholar]
- Liu, T.Y. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval 2009, 3, 225–331. [Google Scholar] [CrossRef]
- Jarvelin, K.; Kekalainen, J. IR evaluation methods for retrieving highly relevant documents. In Proceedings of the SIGIR, 2000; pp. 41–48. [Google Scholar]
- Zhao, Y.; Wang, Y.; Liu, Y.; Cheng, X.; Aggarwal, C.C.; Derr, T. Fairness and diversity in recommender systems: a survey. ACM TIST 2025, 16, 1–28. [Google Scholar] [CrossRef]
- Winter, L. Dataset Pruning in RecSys and ML: Best Practice or Mal-Practice? arXiv arXiv:2510.14704. [CrossRef]
- Ma, H.; Xie, R.; Meng, L.; Feng, F.; Du, X.; Sun, X.; Kang, Z.; Meng, X. Negative sampling in recommendation: A survey and future directions. arXiv 2024, arXiv:2409.07237. [Google Scholar] [CrossRef]
- Krichene, W.; Rendle, S. On Sampled Metrics for Item Recommendation. In Proceedings of the SIGKDD, 2020; pp. 1748–1757. [Google Scholar]
- Bousquet, O.; Elisseeff, A. Algorithmic Stability and Generalization Performance. In Proceedings of the NeurIPS, 2000; pp. 196–202. [Google Scholar]
- Zhang, S.; Yao, D.; Zhao, Z.; Chua, T.S.; Wu, F. Causerec: Counterfactual user sequence synthesis for sequential recommendation. In Proceedings of the SIGIR, 2021; pp. 367–377. [Google Scholar]
- Chen, Z.; Deng, Y.; Wu, Y.; Gu, Q.; Li, Y. Towards Understanding the Mixture-of-Experts Layer in Deep Learning. In Proceedings of the NeurIPS, 2022; pp. 23049–23062. [Google Scholar]








| Survey Category | Primary Focus | Addresses Unreliable Instances? |
Handles Sequential Data? |
Specific to SRS Context? |
|---|---|---|---|---|
| General SRS [1,3,4] | Model architectures and learning paradigms for SRSs |
× | ∘ | ∘ |
| Robustness in RS [2,18,19] | Robustness for non-sequential RSs |
▵ | × | × |
| CV/NLP Denoising [20,21] | Label noise in CV and NLP tasks |
▵ | × | × |
| Our Survey (RSR) | Robustness against unreliable instances in sequential recommendation |
∘ | ∘ | ∘ |
| Category | Metric | Definition | Requirements | Representative Publications | |
|---|---|---|---|---|---|
| Training-phase Robustness Metrics |
/ | Relative Improvements (RI) |
Recommendation Lists | [14,15,25,137,138] | |
| Inference-phase Robustness Metrics |
Diversity Metrics |
Intra-List Distance@K (ILD@K) |
Recommendation Lists Item Embeddings |
[129,219,220] | |
| Diversity@K | Recommendation Lists Item Categories |
[215] | |||
| Calibration Metrics |
KL Calibration (KLC) |
Recommendation Lists Item Categories |
[203,204,207,208] | ||
| Total Variation (TV) |
Recommendation Lists Item Categories |
[204] | |||
| Dataset | Domain | #Users | #Items | #Interactions | Features beyond User-item Interaction |
|---|---|---|---|---|---|
| Beauty_and_Personal_Care | E-commerce | 11.3M | 1.0M | 23.9M | User-item Review, Item Auxiliary Info |
| MovieLens | Movie | 200.9K | 87.6K | 32.0M | User Auxiliary Info, Item Auxiliary Info |
| Toys_and_Games | E-commerce | 8.1M | 890.7K | 16.3M | User-item Interaction, Item Auxiliary Info |
| Yelp | E-commerce | 30.4K | 20.0K | 316.3K | Item Auxiliary Info |
| Sports_and_Outdoors | E-commerce | 10.3M | 1.6M | 19.6M | User-item Review, Item Auxiliary Info |
| Steam | Game | 2.6M | 15.5K | 78M | User-item Review, Item Auxiliary Info |
| Books | E-commerce | 10.3M | 4.4M | 29.5M | User-item Review, Item Auxiliary Info |
| Yoochoose | E-commerce | 115.6K | 24.1K | 1.8M | Item Auxiliary Info |
| CDs_and_Vinyl | E-commerce | 1.8M | 701.7K | 4.8M | User-item Review, Item Auxiliary Info |
| Diginetica | E-commerce | 780.3K | 43.1K | 982.9K | / |
| Retailrocket | E-commerce | 1.4M | 417.1K | 2.8M | Item Auxiliary Info |
| Clothing_Shoes_and_Jewelry | E-commerce | 22.6M | 7.2M | 66.0M | User-item Review, Item Auxiliary Info |
| Last-FM | Music | 23.6K | 48.1K | 3.0M | Item Auxiliary Info, User-User Social Network |
| Electronic | E-commerce | 18.3M | 1.6M | 43.9M | User-item Review, Item Auxiliary Info |
| Home_and_Kitchen | E-commerce | 23.2M | 3.7M | 67.4M | User-item Review, Item Auxiliary Info |
| Gowalla | LBSN | 196.6K | 1.3M | 6.4M | User-User Social Network |
| Movies_and_TV | E-commerce | 6.5M | 747.8K | 17.3M | User-item Review, Item Auxiliary Info |
| Tools_and_Home_Improvement | E-commerce | 12.2M | 1.5M | 27.0M | User-item Review, Item Auxiliary Info |
| MIND | News | 161.0K | 317.1K | 24.2M | Item Auxiliary Info, User-item Non-click Event |
| Netflix | Movie | 463.4K | 17.8M | 57.0M | / |
| Baby_Products | E-commerce | 3.4M | 217.7K | 6.0M | User-item Review, Item Auxiliary Info |
| Office_Products | E-commerce | 7.6M | 710.4K | 12.8M | User-item Review, Item Auxiliary Info |
| Video_Games | E-commerce | 2.8M | 137.2K | 4.6M | User-item Review, Item Auxiliary Info |
| Amazon | E-commerce | 6.2K | 2.8K | 587.4K | User-item Review, Item Auxiliary Info |
| Foursquare | LBSN | 114.3K | 3.8M | 22.8M | User Auxiliary Info, Item Auxiliary Info, User-User SocialNetwork |
| Tmall | E-commerce | 424.2K | 1.1M | 55.0M | User Auxiliary Info, Item Auxiliary Info |
| Taobao | E-commerce | 988.0K | 4.2M | 100.2M | Item Auxiliary Info |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.