Submitted:
23 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Antiprotozoal Activity of the Crude Extracts and Acid-Base Fractions
2.2. Fractionation, LC/MS Profiling and PLS Modeling to Predict Constituents with High Activity
2.3. Isolation of Steroidal Alkaloids from Holarrhena pubescens Stem Bark
2.3. Antiprotozoal Activity of the Steroidal Alkaloids Isolated from Holarrhena pubescens
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Small-Scale Extracts
3.3. Extraction of Holarrhena pubescens Stem Bark for Detailed Study
3.4. Isolation of Alkaloids from Holarrhena pubescens Stem Bark Extract
3.5. Liquid Chromratographic/Mass Spectrometric Analysis
3.6. Multivariate Data Analysis/PLS Modelling
3.7. NMR Spectroscopic Analysis
3.8. Spectral Data of the Known Compounds
3.9. In Vitro Bioassays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Author Statement
References
- World Health Organization Trypanosomiasis, Human African (Sleeping Sickness) Available online: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed on 5 January 2026).
- Franco, J.R.; Priotto, G.; Paone, M.; Cecchi, G.; Ebeja, A.K.; Simarro, P.P.; Sankara, D.; Metwally, S.B.A.; Argaw, D.D. The Elimination of Human African Trypanosomiasis: Monitoring Progress towards the 2021–2030 WHO Road Map Targets. PLoS Negl Trop Dis 2024, 18, e0012111. [CrossRef]
- World Health Organization Malaria Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 5 January 2026).
- Haldar, K.; Bhattacharjee, S.; Safeukui, I. Drug Resistance in Plasmodium. Nat Rev Microbiol 2018, 16, 156–170. [CrossRef]
- Nweze, J.A.; Mbaoji, F.N.; Li, Y.M.; Yang, L.Y.; Huang, S.S.; Chigor, V.N.; Eze, E.A.; Pan, L.X.; Zhang, T.; Yang, D.F. Potentials of Marine Natural Products against Malaria, Leishmaniasis, and Trypanosomiasis Parasites: A Review of Recent Articles. Infect Dis Poverty 2021, 10, 9-. [CrossRef]
- Cheuka, P.M.; Mayoka, G.; Mutai, P.; Chibale, K. The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases. Molecules 2017, 2016, 22, 58. [CrossRef]
- Althaus, J.B.; Jerz, G.; Winterhalter, P.; Kaiser, M.; Brun, R.; Schmidt, T.J. Antiprotozoal Activity of Buxus sempervirens and Activity-Guided Isolation of O-Tigloylcyclovirobuxeine-B as the Main Constituent Active against Plasmodium falciparum. Molecules 2014, 19, 6184–6201. [CrossRef]
- Nnadi, C.; Nwodo, N.; Kaiser, M.; Brun, R.; Schmidt, T.J. Steroid Alkaloids from Holarrhena africana with Strong Activity against Trypanosoma brucei rhodesiense. Molecules 2017, 22, 1129. [CrossRef]
- Szabó, L.U.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Antiprotozoal Nor-Triterpene Alkaloids from Buxus sempervirens L. Antibiotics 2021, 10, 696. [CrossRef]
- Schäfer, L.; Cal, M.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Antiprotozoal Aminosteroids from Pachysandra terminalis. Molecules 2025, 30, 1093. [CrossRef]
- Mukavi, J.W.; Cal, M.; Kaiser, M.; Mäser, P.; Kimani, N.M.; Omosa, L.K.; Schmidt, T.J. Antiprotozoal Aminosteroid Alkaloids from Buxus obtusifolia (Mildbr.) Hutch. Molecules 2025 30, 4558. [CrossRef]
- Royal Botanic Gardens, K. Plants of the World Online. Holarrhena pubescens Wall. Ex G.Don Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:79318-1 (accessed on 5 January 2026).
- Omino, E.; Kokwaro, J. Ethnobotany of Apocynaceae Species in Kenya. J Ethnopharmacol 1993, 40, 167–180. [CrossRef]
- Gaur, R.; Sharma, J.; Painuli, R. Plants Used in Traditional Healthcare of Livestock by Gujjar Community of Sub-Himalayan Tracts, Uttarakhand, India. Indian J Nat Prod Resour 2010, 1, 243–248.
- Prasad, A.G.D.; Shyma, T.B.; Raghavendra, M.P. Plants Used by the Tribes for the Treatment of Digestive System Disorders in Wayanad District, Kerala. J Appl Pharm Sci 2013, 3, 171–175. [CrossRef]
- Pawar, G.; Pandey, V.; Saxena, H.O.; Anil; Yadav, K.; Dabral, A. Holarrhena Species: A Review of the Traditional Uses, Active Constituents and Pharmacological Properties. Discover Plants 2024, 1, 52-. [CrossRef]
- Sinha, S.; Sharma, A.; Reddy, P.H.; Rathi, B.; Prasad, N.V.S.R.K.; Vashishtha, A. Evaluation of Phytochemical and Pharmacological Aspects of Holarrhena antidysenterica (Wall.): A Comprehensive Review. J Pharm Res 2013, 6, 488–492. [CrossRef]
- Cheenpracha, S.; Boapun, P.; Limtharakul (née Ritthiwigrom), T.; Laphookhieo, S.; Pyne, S.G. Antimalarial and Cytotoxic Activities of Pregnene-Type Steroidal Alkaloids from Holarrhena pubescens Roots. Nat Prod Res 2019, 33, 782–788. [CrossRef]
- Alyahya, A.R.A.I.; Asad, M.; Alhussaini, M.S.; Abdelsalam, K.E.A.; Alenezi, E.A. The Antidiabetic Effect of Methanolic Extract of Holarrhena pubescens Seeds Is Mediated through Multiple Mechanisms of Action. Saudi Pharm J 2023, 31, 824–833. [CrossRef]
- Chakraborty, A.; Brantner, A.H. Antibacterial Steroid Alkaloids from the Stem Bark of Holarrhena pubescens. J Ethnopharmacol 1999, 68, 339–344. [CrossRef]
- Saha, R.; Gupta, M.; Majumdar, R.; Saha, S.; Kar, P.K. Anthelmintic Efficacy of Holarrhena pubescens against Raillietina Spp. of Domestic Fowl through Ultrastructural, Histochemical, Biochemical and GLCM Analysis. PLoS One 2023, 18, e0282033. [CrossRef]
- Nondo, R.S.O.; Moshi, M.J.; Erasto, P.; Masimba, P.J.; Machumi, F.; Kidukuli, A.W.; Heydenreich, M.; Zofou, D. Anti-Plasmodial Activity of Norcaesalpin D and Extracts of Four Medicinal Plants Used Traditionally for Treatment of Malaria. BMC Complement Altern Med 2017, 17, 167-. [CrossRef]
- Djila Possi, F.L.; Kinyok, M.J.; Mbasso Tameko, J.E.; Bel, B.Y.; Jumeta Dongmo, J.K.; Tchatat Tali, M.B.; Kene Dongmo, A.; Fekam Boyom, F.; Kezetas Bankeu, J.J.; Sewald, N.; et al. UHPLC-QTOF-ESI-MS/MS, SNAP-MS Identification, In Silico Prediction of Pharmacokinetic Properties of Constituents from the Stem Bark of Holarrhena floribunda (G. Don) T. Durand and Schinz (Apocynaceae). Biomolecules 2025, 15, 1415. [CrossRef]
- Szabó, L.U.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Identification of Antiprotozoal Compounds from Buxus sempervirens L. by PLS-Prediction. Molecules 2021, 26. [CrossRef]
- Jeger, O.; Prelog, V. Chapter 15 Steroid Alkaloids: The Holarrhena Group. Alkaloids: Chem Physiol 1960, 7, 319–342. [CrossRef]
- Tran, H.; Nguyen, Q.; Phan, V.; Chau, V.; Nguyen, H.; Nguyen, X. Alkaloidal Steroids from the Stem Bark of “Moc Hoa Trang”(Holarrhena pubescens Buch. Harm) Wall Ex. G. Don. Tap Chi Duoc Hoc 2006, 46, 24–27.
- Černý, V.; Dolejš, L.; Šorm, F. On Steroids. LXXXVII. Dihydroisoconessimine and 3α-Aminoconan-5-Ene, New Alkaloids from Holarrhena antidysenterica WALL. Collect Czechoslov Chem Commun 1964, 29, 1591–1597. [CrossRef]
- Zirihi, G.N.; Grellier, P.; Guédé-Guina, F.; Bodo, B.; Mambu, L. Isolation, Characterization and Antiplasmodial Activity of Steroidal Alkaloids from Funtumia elastica (Preuss) Stapf. Bioorg Med Chem Lett 2005, 15, 2637–2640. [CrossRef]
- Chemical Abstracts Service. SciFinder CAS Registry Number: 802860-24-8. Available online: https://scifinder-n.cas.org/ (accessed on 6 January 2026).
- Tolela, M.D.L.; Foche, P. Minor Alkaloids of the Seeds of Funtumia elastica of Zaire. Planta Med 1979, 35, 48–50. [CrossRef]
- Janot, M.M.; Khuong-Huu-Laine, F.; Goutarel, R.; Magdeleine, M.J. Steroid Alkaloids. XVI. Malouphyllamine, Alkaloid of Malouetia bequaertiana. Bull Soc Chim Fr 1963, 641–646.
- Kawamoto, S.; Koyano, T.; Kowithayakorn, T.; Fujimoto, H.; Okuyama, E.; Hayashi, M.; Komiyama, K.; Ishibashi, M. Wrightiamines A and B, Two New Cytotoxic Pregnane Alkaloids from Wrightia javanica. Chem Pharm Bull (Tokyo) 2003, 51, 737–739. [CrossRef]
- National Center for Biotechnology Information. “PubChem Compound Summary for CID 99572304” PubChem Available online: https://pubchem.ncbi.nlm.nih.gov/compound/99572304 (accessed on 6 January 2026).
- Dadoun, H.; Cave, A.; Goutarel, R. Steroidal Alkaloids. CLVII. Alkaloids from the Bark of Holarrhena febrifuga (Apocynaceae). Ann Pharm Fr 1973, 31, 237–247.
- Greenspan, G.; Rees, R.; Smith, L.L.; Alburn, H.E. Microbiological Hydroxylation of Alkaloids from Funtumia latifolia. J Org Chem 2002, 30, 4215–4219. [CrossRef]
- Janot, M.M.; Monseur, X.; Conreur, C.; Goutarel, R. Steroidal Alkaloids. X. Holafebrine, 20-α-Amino-5-Pregnen-3β-ol, a Natural Steroid Amine, Obtained from Holarrhena febrifuga and Kibatalia arborea. Bull Soc Chim Fr 1962, 285–287.
- Edge, G.J.; Imam, S.H.; Marples, B.A. Steroids. Part 21. Photorearrangement of Steroidal Nitronate Salts and a N-Butyl Spiro-Oxaziridine. J Chem Soc Perkin 1 1984, 2319–2325. [CrossRef]
- Lábler, L.; Šorm, F. On Steroids. XLIV. 3β,18-Dihydroxy-5α-Pregnan-20-One (18→20 Cyclohemiketal) from Holarrhimine. Collect Czechoslov Chem Commun 1959, 24, 2975–2985. [CrossRef]
- Lábler, L.; Šorm, F. On Steroids. XLVIII. Partial Synthesis of 18-Hydroxyprogesterone from Holarrhimine. Collect Czechoslov Chem Commun 1960, 25, 265–269. [CrossRef]
- Ram, M.; Godse, D.D.; Bhattacharyya, P.K. Transformations of Kurchi Alkaloids—I: The Action of Nitrous Acid on Holarrhimine. Tetrahedron 1962, 18, 1457–1466. [CrossRef]
- Siddiqui, B.S.; Usmani, S.B.; Begum, S.; Siddiqui, S. Steroidal Alkaloids and an Androstane Derivative from the Bark of Holarrhena pubescens. Phytochemistry 1993, 33, 925–928. [CrossRef]
- Abd Karim, H.A.; Ismail, N.H.; Osman, C.P. Steroidal Alkaloids From the Apocynaceae Family: Their Isolation and Biological Activity. Nat Prod Commun 2022, 17. [CrossRef]
- Szabó, L.U.; Schmidt, T.J. Target-Guided Isolation of O-Tigloylcyclovirobuxeine-B from Buxus sempervirens L. by Centrifugal Partition Chromatography. Molecules 2020, 25, 4804. [CrossRef]
- Mukavi, J.; Kaiser, M.; Mäser, P.; Kimani, N.M.; Omosa, L.K.; Schmidt, T.J. Holarrhena pubescens: alkaloid fractions with promising antiprotozoal activities. In Proceedings of the Annual Meeting of the German Pharmaceutical Society (DPhG); Münster, September 23 2023; p. 113.
- Mukavi, J.; Cal, M.; Kaiser, M.; Mäser, P.; Kimani, N.M.; Omosa, L.K.; Schmidt, T.J. Antiprotozoal Aminosteroid Alkaloids from Holarrhena pubescens Wall. ex G. Don. In Proceedings of the 73rd International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA); Naples, August 31 2025.




| Test sample | Tbr | Pf | Cytotox. L6 | SI (Tbr) | SI (Pf) |
| Small-scale extracts | |||||
| Twigs (CH3OH) | 16 ± 0.5 | 17 ± 0.4 | 63 ± 7.9 | 3.9 | 3.7 |
| Twigs (CH2Cl2) | 34 ± 7.9 | 21 ± 1.0 | 62 ± 8.6 | 1.8 | 3.0 |
| Leaves (CH3OH) | 3.9 ± 0.2 | 14 ± 4.5 | 57 ± 7.7 | 15 | 4.1 |
| Leaves (CH2Cl2) | 30 ± 8.8 | 8.1 ± 0.1 | 55 ± 7.5 | 1.8 | 6.8 |
| Stem bark (CH3OH) | 1.6 ± 0.2 | 6.7 ± 0.8 | 69a | 43 | 10 |
| Stem bark (CH2Cl2) | 45 ± 1.1 | 27 ± 2.6 | >100b | - | - |
| Large-scale CH3OH stem bark extract and its acid-base fractions | |||||
| Total crude extract | 0.9 ± 0.2 | 4.0 ± 0.1 | 61 ± 4.8 | 68 | 15 |
| Alkaloid fraction | 0.2 ± 0.0 | 0.7 ± 0.2 | 15 ± 4.1 | 75 | 21 |
| Lipophilic fraction | 2.1 ± 0.0 | 4.1 ± 0.6 | 51 ± 9.2 | 24 | 12 |
| Positive controls | 0.004 ± 0.000 | 0.002 ± 0.000 | 0.007 ± 0.003 | - | - |
| Test sample | Tbr | Pf | Cytotox.L6 | SI Tbr | SI Pf |
| Fr. 01 | 0.1 ± 0.0 | 1.0 ± 0.1 | 25 ± 6.2 | 250 | 25 |
| Fr. 02 | 0.2 ± 0.0 | 1.1 ± 0.1 | 39 ± 11 | 195 | 35 |
| Fr. 03 | 0.2 ± 0.0 | 1.0 ± 0.1 | 42 ± 7.2 | 210 | 42 |
| Fr. 04 | 2.0 ± 0.2 | 9.4 ± 2.2 | 84a | 42 | 9 |
| Fr. 05 | 0.5 ± 0.1 | 2.1 ± 0.5 | 50 ± 3.8 | 100 | 24 |
| Fr. 06 | 0.5 ± 0.2 | 0.8 ± 0.1 | 46 ± 4.6 | 92 | 58 |
| Fr. 07 | 0.8 ± 0.2 | 0.8 ± 0.2 | 43 ± 6.9 | 54 | 54 |
| Fr. 08 | 0.8 ± 0.1 | 0.3 ± 0.0 | 18 ± 0.6 | 23 | 60 |
| Fr. 09 | 0.7 ± 0.0 | 0.6 ± 0.2 | 17 ± 0.4 | 24 | 28 |
| Fr. 10 | 0.6 ± 0.2 | 0.2 ± 0.1 | 15 ± 1.7 | 25 | 75 |
| Fr. 11 | 0.8 ± 0.0 | 0.1 ± 0.0 | 15 ± 2.6 | 19 | 150 |
| Fr. 12 | 2.4 ± 0.2 | 1.0 ± 0.1 | 46 ± 2.7 | 19 | 46 |
| Fr. 13 | 2.1 ± 0.1 | 2.9 ± 0.3 | 16 ± 1.7 | 8 | 6 |
| Fr. 14 | 0.3 ± 0.1 | 0.8 ± 0.2 | 9.5 ± 4.0 | 32 | 12 |
| Fr. 15 | 0.5 ± 0.1 | 0.9 ± 0.1 | 9.2 ± 0.4 | 18 | 10 |
| Fr. 16 | 3.0 ± 0.7 | 1.8 ± 0.7 | 22 ± 5.0 | 7 | 12 |
| Positive controls | 0.004 ± 0.001 | 0.002 ± 0.000 | 0.010 ± 0.001 | - | - |
| Pos. | 1H-NMRδ(ppm) Mult.J [Hz] | 13C-NMR (ppm) |
| 1 | 1.78, m 1.11, m |
38.5 |
| 2 | 1.76, m 1.39, m |
29.4 |
| 3 | 3.74, m | 49.0 |
| 4 | 1.52, m 1.27, m |
35.9 |
| 5 | 1.25, m | 46.5 |
| 6 | 1.32, m 1.26, m |
29.3 |
| 7 | 1.81, m 1.09, m |
33.0 |
| 8 | 1.26, m | 38.9 |
| 9 | 0.82, m | 54.7 |
| 10 | - | 36.6 |
| 11 | 1.80, m 1.06, m |
23.0 |
| 12 | 2.04, m 1.49, m |
37.9 |
| 13 | - | 53.2 |
| 14 | 1.38, m | 55.5 |
| 15 | 1.84, m 1.17, m |
27.2 |
| 16 | 1.69, m, (2H) | 23.3 |
| 17 | 2.35, dt, (9.77, 4.71) | 53.5 |
| 18 | 3.59, m 2.90, m |
62.6 |
| 19 | 0.82, s, (3H) | 12.5 |
| 20 | 3.58, m | 67.5 |
| 21 | 1.38, d (3H, 6.63) | 12.0 |
| 22 | 2.88, s (3H) | 40.4 |
| 1′ | 7.95, s | 162.8 |
| Compound | Tbr [μmol/L] | Pf[μmol/L] | Cytotox[μmol/L] | SI Tbr | SI Pf |
| 1b | 4.0 ± 1.2 | 2.0 ± 0.0 | 25.7 ± 4.6 | 6 | 13 |
| 2b | 0.2 ± 0.0 | 2.0 ± 0.2 | 25.3 ± 6.7 | 127 | 13 |
| 3b | 17.3 ± 1.2 | 11.8 ± 1.6 | >100 | - | - |
| 4b | 0.5 ± 0.1 | 2.0 ± 0.1 | 35.0 ± 11 | 70 | 18 |
| 5a | 5.1 ± 0.7 | 0.7 ± 0.1 | 29.8 ± 7.4 | 6 | 43 |
| 6b | 1.3 ± 0.6 | 1.7 ± 0.0 | 29.8 ± 7.5 | 23 | 18 |
| 7b | 13.2 ± 5.9 | 1.5 ± 0.1 | 29.6 ± 1.4 | 2 | 20 |
| 8b | 4.2 ± 1.7 | 1.4 ± 0.1 | 19.6 ± 4.5 | 5 | 14 |
| 9a | 44.2 ± 6.0 | 1.0 ± 0.2 | 23.1 ± 3.1 | 1 | 23 |
| 10b | 1.5 ± 0.5 | 1.8 ± 0.2 | 15.6 ± 2.5 | 10 | 9 |
| 11b | 2.9 ± 1.1 | 3.3 ± 1.0 | 31.9 ± 7.3 | 11 | 10 |
| 12a | 16.4 ± 1.6 | 4.8 ± 0.1 | 56.5 ± 7.8 | 3 | 12 |
| 13a | 2.0 ± 0.1 | 12.7 ± 0.2 | 17.9 ± 0.1 | 9 | 1 |
| 14a | 11.4 ± 5.4 | 13.6 ± 2.8 | 23.6 ± 0.5 | 2 | 2 |
| 15a | 1.8 ± 0.1 | 7.1 ± 0.3 | 19.3 ± 0.7 | 11 | 3 |
| 16a | 0.2 ± 0.1 | 4.9 ± 0.8 | 4.5 ± 1.4 | 23 | 1 |
| 17a | 5.3 ± 0.1 | 11.3 ± 3.2 | 12.6 ± 4.9 | 2 | 1 |
| 18a | 5.7 ± 0.4 | 7.2 ± 0.2 | 12.7 ± 4.4 | 2 | 2 |
| 19a | 18.1 ± 1.5 | 11.0 ± 2.6 | 47.6 ± 1.6 | 3 | 4 |
| 20a | 18.5 ± 1.2 | 16.0 ± 1.8 | 52.2 ± 3.2 | 3 | 3 |
| Positive controls | 0.010 ± 0.003 | 0.003 ± 0.001 | 0.010 ± 0.000 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
