Submitted:
26 January 2026
Posted:
27 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area and Physiography
2.2. Geochemical Characteristics
2.3. Soil Sampling and Preparation
2.4. pXRF Measurements and Quality Control
2.5. Data Analysis
3. Results
3.1. Statistical Approach
3.2. The Effect of Sample Heterogeneity on pXRF Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juutinen, M.; Seitsaari, M.; Oulu mining school, University of Oulu, Finland; Sarala, P.; Oulu Mining School, University of Oulu, Finland Geochemical and Mineralogical Characterization of Mine Tailings at the Rautuvaara Mine Site and Aspects to Environmental Conditions and Resource Potential. Bull Geol Soc Finland 2023, 95, 59–78. [CrossRef]
- Dos Santos, D.S.; Ribeiro, P.G.; Andrade, R.; Silva, S.H.G.; Gastauer, M.; Caldeira, C.F.; Guedes, R.S.; Dias, Y.N.; Souza Filho, P.W.M.; Ramos, S.J. Clean and Accurate Soil Quality Monitoring in Mining Areas under Environmental Rehabilitation in the Eastern Brazilian Amazon. Environ Monit Assess 2024, 196, 385. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.; Silva, T.; Morais, I.; Fernandes, J. Chemical and Mineralogical Characterization of Waste from Abandoned Copper and Manganese Mines in the Iberian Pyrite Belt, Portugal: A First Step Towards the Waste-to-Value Recycling Process. Minerals 2025, 15, 58. [Google Scholar] [CrossRef]
- Maciel, G.P.; Ribeiro, P.G.; Pavão, Q.S.; Fernandes, A.R.; Gastauer, M.; Caldeira, C.F.; Guimarães, J.T.F.; Andrade, R.; Silva, S.H.G.; Ramos, S.J. Green Tech Soil Analysis: A Comparison of Potentially Toxic Element Contents among Urban, Agricultural, and Gold Mining Areas in the Eastern Brazilian Amazon. Environ Geochem Health 2024, 46, 448. [Google Scholar] [CrossRef]
- Magiera, T.; Szuszkiewicz, M. Combination of Portable X-Ray Fluorescence With Soil Magnetometry as an Effective Tool for Distinguish Different Pollution Sources. Land Degrad Dev 2025, 36, 2543–2556. [Google Scholar] [CrossRef]
- Palmer, P.T.; Jacobs, R.; Baker, P.E.; Ferguson, K.; Webber, S. Use of Field-Portable XRF Analyzers for Rapid Screening of Toxic Elements in FDA-Regulated Products. J. Agric. Food Chem. 2009, 57, 2605–2613. [Google Scholar] [CrossRef]
- Hall, G.E.M.; Bonham-Carter, G.F.; Buchar, A. Evaluation of Portable X-Ray Fluorescence (pXRF) in Exploration and Mining: Phase 1, Control Reference Materials. GEEA 2014, 14, 99–123. [Google Scholar] [CrossRef]
- Ravansari, R.; Wilson, S.C.; Tighe, M. Portable X-Ray Fluorescence for Environmental Assessment of Soils: Not Just a Point and Shoot Method. Environment International 2020, 134, 105250. [Google Scholar] [CrossRef]
- Laperche, V.; Metayer, C.; Gaschaud, J.; Wavrer, P.; Quiniou, T. On the Influence and Correction of Water Content on pXRF Analysis of Lateritic Nickel Ore Deposits in the Context of Open Pit Mines of New-Caledonia. Minerals 2022, 12, 415. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 0 ed.; CRC Press, 2010; ISBN 978-0-429-19203-6. [Google Scholar]
- Bhattacharya, A.; Routh, J.; Jacks, G.; Bhattacharya, P.; Mörth, M. Environmental Assessment of Abandoned Mine Tailings in Adak, Västerbotten District (Northern Sweden). Applied Geochemistry 2006, 21, 1760–1780. [Google Scholar] [CrossRef]
- Tavares, T.R.; Nunes, L.C.; Alves, E.E.N.; Almeida, E.D.; Maldaner, L.F.; Krug, F.J.; Carvalho, H.W.P.D.; Molin, J.P. Simplifying Sample Preparation for Soil Fertility Analysis by X-Ray Fluorescence Spectrometry. Sensors 2019, 19, 5066. [Google Scholar] [CrossRef]
- Morikawa. A Sample Preparation for X-Ray Fluorescence Analysis II. Pulverizing Methods of Powder Samples. 2014, 30, 23–27. [Google Scholar]
- Stumbea, D. Preliminaries on Pollution Risk Factors Related to Mining and Ore Processing in the Cu-Rich Pollymetallic Belt of Eastern Carpathians, Romania. Environ Sci Pollut Res 2013, 20, 7643–7655. [Google Scholar] [CrossRef] [PubMed]
- López-Pamo, E.; Barettino, D.; Antón-Pacheco, C.; Ortiz, G.; Arránz, J.C.; Gumiel, J.C.; Martı́nez-Pledel, B.; Aparicio, M.; Montouto, O. The Extent of the Aznalcóllar Pyritic Sludge Spill and Its Effects on Soils. Science of The Total Environment 1999, 242, 57–88. [Google Scholar] [CrossRef] [PubMed]
- Steiner, A.E.; Conrey, R.M.; Wolff, J.A. PXRF Calibrations for Volcanic Rocks and the Application of In-Field Analysis to the Geosciences. Chemical Geology 2017, 453, 35–54. [Google Scholar] [CrossRef]
- Marsay, N.H.; Wagland, S.T.; Campo, P.; Alamar, M.C. Development and Optimisation of Ex Situ Portable X-Ray Fluorescence Spectroscopy for Heterogenous Post-Metallurgical Sites. Environ Geochem Health 2025, 47, 298. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martínez-Pagán, P.; De Ignacio, C.; Lillo, J.; Faz, Á. Geoenvironmental Characterization of Unstable Abandoned Mine Tailings Combining Geophysical and Geochemical Methods (Cartagena-La Union District, Spain). Engineering Geology 2018, 232, 135–146. [Google Scholar] [CrossRef]
- Popescu, Gh C. Metalogenie aplicată și prognoză geologică; Edit. Universității București: București, 1986; Vol. 3. [Google Scholar]
- Damian, G.; Apopei, A.I.; Buzatu, A.; Maftei, A.E.; Damian, F. New Mineral Occurrences in Massive Sulfide Deposits from Mănăilă, Eastern Carpathians, Romania. Minerals 2023, 13, 111. [Google Scholar] [CrossRef]
- Kräutner, HG. Syngenetic Models for the Pyrite and Polymetallic Sulphide Ore Province of the East Carpathian. In Syngenesis and Epigenesis in the Formation of the Mineral Deposits; Springer: Berlin, 1984; pp. 537–552. [Google Scholar]
- Stumbea, D; Pavel, E. Geochemistry of Waste from the Tailings Pond of Pârâul Cailor, Fundu Moldovei Metallogenic Field, Romania. Carpathian Journal of Earth and Environmental Sciences 2014, 9, 157–166. [Google Scholar]
- Stumbea, D. The Flanks of the Dealul Negru Tailings Pond (Fundu Moldovei) – Pollution Risk Factors. Carpathian Journal of Earth and Environmental Sciences 2013, 8, 103–112. [Google Scholar]
- Radu, M. Research on the geochemistry of the environment in the perimeters of the tailing ponds in the northern part of the metalogenetic province of the Eastern Carpathians; University of Bucharest: Bucharest, 2018. [Google Scholar]
- Simmons, K. Sediment Sampling. Sediment Sampling 2025. [Google Scholar]
- USEPA Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment, Part of Test Methods for Evaluating Solid Waste. Physical/Chemical Methods 2007.
- ASTM D2216 Standard Test Methods for Laboratory Determination of Water; 1998.
- Gee, G; Or, D. Particle-Size Analysis. In Methods of Soil Analysis; Soil Science Society of America: Madison, 2002; Vol. 4, pp. 255–293. [Google Scholar]
- ISO 13196 International Organization for Standardization. Soil Quality—Screening Soils for Selected Elements by Energy-Dispersive X-Ray Fluorescence Spectrometry Using a Handheld or Portable Instrument; 2013.
- Williams, R.; Taylor, G.; Orr, C. pXRF Method Development for Elemental Analysis of Archaeological Soil. Archaeometry 2020, 62, 1145–1163. [Google Scholar] [CrossRef]
- www.retsch.com Three Rules for the Optimum Ball Mill Setup 2025.
- www.fritsch.de Planetary Mono Mill Pulverisette 6 Operating Instructions 2025.
- https://www.bruker.com/ S1 Titan/Tracer 5/CTX 2025.
- Goff, K.; Schaetzl, R.J.; Chakraborty, S.; Weindorf, D.C.; Kasmerchak, C.; Bettis, E.A. Impact of Sample Preparation Methods for Characterizing the Geochemistry of Soils and Sediments by Portable X-ray Fluorescence. Soil Science Soc of Amer J 2020, 84, 131–143. [Google Scholar] [CrossRef]
- Stumbea, D; Chicoș, M. Common and Specific Properties of Waste from the Tailings Ponds of Fundu Moldovei–Leșu Ursului Mine District. Romanian Journal of Mineral Deposits 2016, 89, 13–18. [Google Scholar]
- De Winter, N.J.; Sinnesael, M.; Makarona, C.; Vansteenberge, S.; Claeys, P. Trace Element Analyses of Carbonates Using Portable and Micro-X-Ray Fluorescence: Performance and Optimization of Measurement Parameters and Strategies. J. Anal. At. Spectrom. 2017, 32, 1211–1223. [Google Scholar] [CrossRef]
- Midway, S.; Robertson, M.; Flinn, S.; Kaller, M. Comparing Multiple Comparisons: Practical Guidance for Choosing the Best Multiple Comparisons Test. PeerJ 2020, 8, e10387. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.; Singh, U.; Keshri, A.; Sabaretnam, M. Selection of Appropriate Statistical Methods for Data Analysis. Ann Card Anaesth 2019, 22, 297. [Google Scholar] [CrossRef]
- Zygmont, C.S. Managing the Assumption of Normality within the General Linear Model with Small Samples: Guidelines for Researchers Regarding If, When and How. TQMP 2023, 19, 302–332. [Google Scholar] [CrossRef]
- Oztuna, D; Eltan, A; Tuccar, E. Investigation of Four Different Normality Tests in Terms of Type 1 Error Rate and Power under Different Distributions. Turkish Journal of Medical Sciences 2006, 171–176. [Google Scholar]
- Horowitz, A.J.; Elrick, K.A. The Relation of Stream Sediment Surface Area, Grain Size and Composition to Trace Element Chemistry. Applied Geochemistry 1987, 2, 437–451. [Google Scholar] [CrossRef]
- Zhu, Y.; Weindorf, D.C.; Zhang, W. Characterizing Soils Using a Portable X-Ray Fluorescence Spectrometer: 1. Soil Texture. Geoderma 2011, 167–168, 167–177. [Google Scholar] [CrossRef]
- Cox, S; Curran, C; Spanjer, A; Opatz, C; Tekesue, R; Bell, J. Element Concentrations and Grain Size of Sediment from the Similkameen River above Enloe Dam (Enloe Reservoir) near Oroville, Washington; U.S. Geological Survey data release: Washington, 2021; p. 47. [Google Scholar]
- Stockmann, U.; Jang, H.J.; Minasny, B.; McBratney, A.B. The Effect of Soil Moisture and Texture on Fe Concentration Using Portable X-Ray Fluorescence Spectrometers. In Digital Soil Morphometrics;Progress in Soil Science; Hartemink, A.E., Minasny, B., Eds.; Springer International Publishing: Cham, 2016; pp. 63–71. ISBN 978-3-319-28294-7. [Google Scholar]
- Li, S.; Shen, J.; Bishop, T.F.A.; Viscarra Rossel, R.A. Assessment of the Effect of Soil Sample Preparation, Water Content and Excitation Time on Proximal X-Ray Fluorescence Sensing. Sensors 2022, 22, 4572. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Lai, W.; Lin, Y. Influence of and Correction for Moisture in Rocks, Soils and Sediments on in Situ XRF Analysis. X-Ray Spectrometry 2005, 34, 28–34. [Google Scholar] [CrossRef]
- Santana, M.L.T.; Carvalho, G.S.; Guilherme, L.R.G.; Curi, N.; Ribeiro, B.T. Elemental Concentration via Portable X-Ray Fluorescence Spectrometry: Assessing the Impact of Water Content. Ciênc. agrotec. 2019, 43, e029218. [Google Scholar] [CrossRef]
- Parsons, C.; Margui Grabulosa, E.; Pili, E.; Floor, G.H.; Roman-Ross, G.; Charlet, L. Quantification of Trace Arsenic in Soils by Field-Portable X-Ray Fluorescence Spectrometry: Considerations for Sample Preparation and Measurement Conditions. Journal of Hazardous Materials 2013, 262, 1213–1222. [Google Scholar] [CrossRef]
- Tjallingii, R.; Röhl, U.; Kölling, M.; Bickert, T. Influence of the Water Content on X-ray Fluorescence Core-scanning Measurements in Soft Marine Sediments. Geochem Geophys Geosyst 2007, 8, 2006GC001393. [Google Scholar] [CrossRef]
- Ribeiro, B.T.; Weindorf, D.C.; Silva, B.M.; Tassinari, D.; Amarante, L.C.; Curi, N.; Guimarães Guilherme, L.R. The Influence of Soil Moisture on Oxide Determination in Tropical Soils via Portable X-ray Fluorescence. Soil Science Soc of Amer J 2018, 82, 632–644. [Google Scholar] [CrossRef]
- Landers, R. Old Dominion University Computing Intraclass Correlations (ICC) as Estimates of Interrater Reliability in SPSS.
- Reimann, C.; Filzmoser, P. Normal and Lognormal Data Distribution in Geochemistry: Death of a Myth. Consequences for the Statistical Treatment of Geochemical and Environmental Data. Environmental Geology 2000, 39, 1001–1014. [Google Scholar] [CrossRef]




| Texturea(µm) | Grinded samplesb | Ungrided samples | ||||||
| 200-125 | 125-63 | ≤63 | Ball mill | Mortar & Pestlec | Wet | Dry | ||
| Mean | SiO2 | 62.5 | 62 | 60.4 | 56 | 62.5 | 40.2 | 51.5 |
| Fe2O3 | 4.4 | 5.7 | 8.2 | 6.8 | 7 | 5.4 | 5.9 | |
| Cu | 284.6 | 658 | 927.6 | 354.8 | 333.1 | 220 | 332.2 | |
| Pb | 740 | 1102.2 | 2331.2 | 943.1 | 844.6 | 930.8 | 1070.4 | |
| Zn | 58 | 141.8 | 462.4 | 125.4 | 126.2 | 211.7 | 289.7 | |
| As | 94 | 131.2 | 223.2 | 127 | 127.7 | 117.2 | 128.5 | |
| Min. | SiO2 | 48.4 | 57 | 55.5 | 39.1 | 46 | 27.6 | 37.3 |
| Fe2O3 | 2.1 | 3.6 | 6.1 | 3.3 | 3.4 | 2.2 | 2.3 | |
| Cu | 42 | 56 | 92 | 55 | 59 | 50 | 56 | |
| Pb | 74 | 122 | 261 | 65 | 72.6 | 52 | 54 | |
| Zn | 27 | 60 | 88 | 48 | 49 | 53 | 64 | |
| As | 34 | 40 | 95 | 23 | 17.3 | 28 | 22 | |
| Max. | SiO2 | 75.1 | 75.5 | 68.2 | 77 | 77.3 | 52.8 | 63.7 |
| Fe2O3 | 9.4 | 7.3 | 11.9 | 10 | 10.4 | 8.9 | 8.9 | |
| Cu | 621 | 2278 | 3103 | 1496 | 1521.3 | 696 | 1179 | |
| Pb | 1499 | 3492 | 7983 | 2465 | 2430 | 1931 | 2398 | |
| Zn | 92 | 427 | 1686 | 278 | 314.6 | 960 | 1263 | |
| As | 224 | 286 | 408.5 | 238 | 236 | 218 | 251 | |
| StDev | SiO2 | 10.2 | 7.6 | 4.91 | 11.2 | 10.1 | 8.8 | 10.3 |
| Fe2O3 | 2.9 | 1.3 | 2.24 | 2.7 | 2.1 | 2.3 | 2.2 | |
| Cu | 287 | 947.4 | 1276.2 | 512.3 | 527.6 | 223.2 | 395.8 | |
| Pb | 552 | 1356.9 | 3184.5 | 795.9 | 773.3 | 634.7 | 794.2 | |
| Zn | 29.3 | 159.8 | 685.8 | 72.1 | 85.8 | 330.5 | 435.8 | |
| As | 74.4 | 92.8 | 120.2 | 78.4 | 66.9 | 68.2 | 82.9 | |
| Skewness | SiO2 | -0.2 | 2.1 | 1.1 | 0.7 | -0.1 | -0.1 | -1.6 |
| Fe2O3 | 1.6 | -0.8 | 1.4 | 0.4 | 0.4 | 0 | -0.4 | |
| Cu | 0.6 | 1.8 | 1.7 | 2.4 | 2.5 | 2 | 2.1 | |
| Pb | 0.3 | 2 | 2.1 | 1.1 | 1.6 | 0.4 | 0.8 | |
| Zn | 0 | 2 | 2.2 | 1.8 | 2.2 | 2.6 | 2.4 | |
| As | 1.9 | 1.5 | 0.9 | -0.3 | 0.4 | -0.6 | 0.4 | |
| Ball mill vs. Mortar & Pestle | Ball mill vs. Ungrided dry samples | |
| Significance level vs. decision | ||
| SiO2 | 0.01* | 0.49 |
| Fe2O3 | 0.49 | 0.17 |
| Cu | 0.23 | 0.23 |
| Pb | 0.06 | 0.23 |
| Zn | 1 | 0.49 |
| As | 0.17 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).