Submitted:
23 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Antioxidant Activity



2.3. Enzyme Inhibitory Activity
2.4. Correlations Among Phenolic Compounds and Assays
3. Material and Method
3.1. Plant Material
3.2. Methanol Extraction
3.3. Determination of the Phenolic Composition
3.4. Biological Activity
3.5. Statistical Analysis
3.6. Use of Artificial Intelligence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, K. B.; Rizvi, S. I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2(5), 270–278. [Google Scholar] [CrossRef]
- de Souza Silva, A. P.; de Camargo, A. C.; Lazarini, J. G.; Franchin, M.; Sardi, J. d. C. O.; Rosalen, P. L.; de Alencar, S. M. Phenolic profile and the antioxidant, anti-inflammatory, and antimicrobial properties of Açaí (Euterpe oleracea) meal: a prospective study. Foods 2022, 12(1), 86. [Google Scholar] [CrossRef]
- Aghababaei, F.; Hadidi, M. Recent advances in potential health benefits of quercetin. Pharmaceuticals 2023, 16(7), 1020. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M. T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients 2016, 8(3), 167. [Google Scholar] [CrossRef] [PubMed]
- Hayta, S.; Tasar, N.; Cakilcioglu, U.; Gedik, O. Morphological, karyological features and pollen morphology of endemic Ebenus haussknechtii Bornm. ex Hub.-Mor. from Turkey: A traditional medicinal herb. J. Herb. Med. 2014, 4(3), 141–146. [Google Scholar] [CrossRef]
- Ceylan, R.; Katanić, J.; Zengin, G.; Matić, S.; Aktumsek, A.; Boroja, T.; Stanić, S.; Mihailović, V.; Guler, G. O.; Boga, M. Chemical and biological fingerprints of two Fabaceae species (Cytisopsis dorycniifolia and Ebenus hirsuta): Are they novel sources of natural agents for pharmaceutical and food formulations? Ind. Crops Prod. 2016, 84, 254–262. [Google Scholar] [CrossRef]
- Zemouri, T.; Chikhoune, A.; Benmouhoub, H.; Sahnoune, M. Taxonomic Comparison, Antioxidant and Antibacterial Activities of Three Ebenus pinnata Ait. ecotypes (Fabaceae) from Algeria. Horticulturae 2023, 9(8), 879. [Google Scholar] [CrossRef]
- Akpulat, H. A. Sivas Florasında Jips ve Endemizm. In Matematik ve Fen Alanında Uluslararası Araştırmalar III; Acikgoz, A., Ed.; Eğitim Yayinevi, 2022; pp. 49–63. [Google Scholar]
- Bektaş, E.; Kaltalıoğlu, K.; Şahin, H.; Türkmen, Z.; Kandemir, A. Analysis of phenolic compounds, antioxidant and antimicrobial properties of some endemic medicinal plants. Int. J. Second. Metab. 2018, 5(2), 75–86. [Google Scholar] [CrossRef]
- Feduraev, P.; Chupakhina, G.; Maslennikov, P.; Tacenko, N.; Skrypnik, L. Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants 2019, 8(7), 237. [Google Scholar] [CrossRef]
- Kabtni, S.; Sdouga, D.; Bettaib Rebey, I.; Save, M.; Trifi-Farah, N.; Fauconnier, M.-L.; Marghali, S. Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Sci. Rep. 2020, 10(1), 8293. [Google Scholar] [CrossRef]
- Gashi, N.; Szőke, Z.; Czakó, A.; Fauszt, P.; Dávid, P.; Mikolás, M.; Stündl, L.; Gál, F.; Remenyik, J.; Sándor, Z. Gypsum and Tillage Practices for Combating Soil Salinity and Enhancing Crop Productivity. Agriculture 2025, 15(6), 658. [Google Scholar] [CrossRef]
- Uyar, Z.; Böke, N.; Türkay, E.; Koz, Ö.; Yaşa, İ.; Kırmızıgül, S. Flavonoid glycosides and methylinositol from Ebenus haussknechtii. Nat. Prod. Res. 2006, 20(11), 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Abreu, P. M.; Braham, H.; Ben Jannet, H.; Mighri, Z.; Matthew, S. Antioxidant compounds from Ebenus pinnata. Fitoterapia 2007, 78(1), 32–34. [Google Scholar] [CrossRef]
- Erenler, R.; Yıldız, İ.; Geçer, E. N.; Kocaman, A. Y.; Alma, M. H.; Demirtas, İ.; Başar, Y.; Hosaflıoğlu, İ.; Behçet, L. Phytochemical analyses of Ebenus haussknechtii flowers: Quantification of phenolics, antioxidants effect, and molecular docking studies. Journal of Integrative and Anatolian Medicine 2024, 5(2), 1–9. [Google Scholar] [CrossRef]
- Jafni, S.; Sathya, S.; Arunkumar, M.; Kiruthiga, C.; Jeyakumar, M.; Murugesh, E.; Devi, K. P. Hesperidin Methyl Chalcone reduces extracellular Aβ (25-35) peptide aggregation and fibrillation and also protects Neuro 2a cells from Aβ (25-35) induced neuronal dysfunction. Biorg. Med. Chem. 2023, 96, 117536. [Google Scholar] [CrossRef]
- Okello, E. J.; Mather, J. Comparative kinetics of acetyl-and butyryl-cholinesterase inhibition by green tea catechins| relevance to the symptomatic treatment of Alzheimer’s disease. Nutrients 2020, 12(4), 1090. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y.; Tao, L.; Tao, X.; Su, X.; Wei, D. Tyrosinase inhibitory effects and inhibition mechanisms of nobiletin and hesperidin from citrus peel crude extracts. J. Enzyme Inhib. Med. Chem. 2007, 22(1), 83–90. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Chung, J. E.; Kurisawa, M.; Uyama, H.; Kobayashi, S. New tyrosinase inhibitors,(+)-catechin− aldehyde polycondensates. Biomacromolecules 2004, 5(2), 474–479. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Liu, X.; Sun, L. Inconsistency between polyphenol-enzyme binding interactions and enzyme inhibition: Galloyl moiety decreases amyloglucosidase inhibition of catechins. Food Res. Int. 2023, 163, 112155. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Tanaka, T.; Tamura, S.; Toshima, A.; Tamaya, K.; Miyata, Y.; Tanaka, K.; Matsumoto, K. α-Glucosidase inhibitory profile of catechins and theaflavins. J. Agric. Food Chem. 2007, 55(1), 99–105. [Google Scholar] [CrossRef] [PubMed]
- Selvi, B. Comparative study of Pentanema verbascifolium extracts: Phytochemical composition, antioxidant potential, and enzyme inhibition across plant parts. Food Biosci. 2025, 68, 106607. [Google Scholar] [CrossRef]
- Zengin, G.; Uren, M. C.; Kocak, M. S.; Gungor, H.; Locatelli, M.; Aktumsek, A.; Sarikurkcu, C. Antioxidant and Enzyme Inhibitory Activities of Extracts from Wild Mushroom Species from Turkey. Int. J. Med. Mushrooms 2017, 19(4), 327–336. [Google Scholar] [CrossRef] [PubMed]
- Cittan, M.; Çelik, A. Development and validation of an analytical methodology based on Liquid Chromatography–Electrospray Tandem Mass Spectrometry for the simultaneous determination of phenolic compounds in olive leaf extract. J. Chromatogr. Sci. 2018, 56(4), 336–343. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçaǧ, E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57(5-6), 292–304. [Google Scholar] [CrossRef] [PubMed]
- Kocak, M. S.; Sarikurkcu, C.; Cengiz, M.; Kocak, S.; Uren, M. C.; Tepe, B. Salvia cadmica: Phenolic composition and biological activity. Ind. Crops Prod. 2016, 85, 204–212. [Google Scholar] [CrossRef]
- Tepe, B.; Sarikurkcu, C.; Berk, S.; Alim, A.; Akpulat, H. A. Chemical composition, radical scavenging and antimicrobial activity of the essential oils of Thymus boveii and Thymus hyemalis. Rec. Nat. Prod. 2011, 5(3), 208–220. [Google Scholar]
- Sarikurkcu, C.; Locatelli, M.; Mocan, A.; Zengin, G.; Kirkan, B. Phenolic Profile and Bioactivities of Sideritis perfoliata L.: The Plant, Its Most Active Extract, and Its Broad Biological Properties. Front. Pharmacol. 2020, 10, 1642. [Google Scholar] [CrossRef]
- Ozer, M. S.; Kirkan, B.; Sarikurkcu, C.; Cengiz, M.; Ceylan, O.; Atilgan, N.; Tepe, B. Onosma heterophyllum: Phenolic composition, enzyme inhibitory and antioxidant activities. Ind. Crops Prod. 2018, 111, 179–184. [Google Scholar] [CrossRef]
- Sun, T.; Tanumihardjo, S. A. An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 2007, 72(9), R159–R165. [Google Scholar] [CrossRef]


| No | Compounds | Flowers | Leaves | Stems | Roots |
|---|---|---|---|---|---|
| 1 | Hesperidin | 11819±67c | 13969±27b | 18016±52a | 3788±37d |
| 2 | (+)-Catechin | 1951±59b | 1726±19c | 4434±10a | 1384±1d |
| 3 | (-)-Epicatechin | 1882±38b | 1010±3c | 2238±1a | 1895±14b |
| 4 | Protocatechuic acid | 429±8a | 84.0±0.6c | 187±2b | 64.5±0.7d |
| 5 | Hyperoside | 426±6b | 361±1c | 497±7a | 92.5±2.9d |
| 6 | Verbascoside | 133±2c | 69.1±0.6d | 582±25a | 184±1b |
| 7 | p-Coumaric acid | 108±2a | 12.4±0.6d | 40.3±1.0c | 47.5±0.8b |
| 8 | 3-Hydroxybenzoic acid | 100±1a | 14.2±1.1d | 64.3±0.7c | 83.5±0.7b |
| 9 | 4-Hydroxybenzoic acid | 101±1a | 14.0±0.5d | 65.0±1.7c | 81.4±0.6b |
| 10 | Ferulic acid | 81.5±1.1a | 19.2±0.3c | 19.2±0.1c | 33.9±1.5b |
| 11 | Syringic acid | 57.8±1.9a | 5.87±0.07d | 25.2±0.4c | 45.2±0.3b |
| 12 | Gallic acid | 49.9±0.7a | 32.3±0.5c | 44.1±0.1b | 14.3±0.2d |
| 13 | Quercetin | 48.2±0.7a | 16.2±0.1d | 26.9±0.3b | 21.9±0.7c |
| 14 | Rosmarinic acid | 26.8±0.7a | 17.8±0.7b | 12.1±0.1d | 14.5±0.4c |
| 15 | Caffeic acid | 19.9±0.3a | 2.91±0.10d | 6.88±0.40c | 9.9±0.1b |
| 16 | Vanillin | 15.3±0.4c | 5.25±0.08d | 45.0±0.9b | 61.0±0.5a |
| 17 | Taxifolin | 14.9±0.1a | 0.66±0.08d | 2.39±0.06c | 6.66±0.21b |
| 18 | Luteolin 7-glucoside | 12.4±0.4b | 5.24±0.13d | 8.64±0.13c | 15.7±0.6a |
| 19 | Chlorogenic acid | 9.67±0.21c | 8.22±0.14c | 17.8±0.1b | 103±3a |
| 20 | Sinapic acid | 4.86±0.07b | 1.52±0.06c | 4.56±0.09b | 13.1±0.3a |
| 21 | Eriodictyol | 1.71±0.01c | 0.41±0.03d | 2.40±0.02b | 3.69±0.19a |
| 22 | 2-Hydroxycinnamic acid | nd | nd | nd | nd |
| 23 | 3,4-Dihydroxyphenylacetic acid | nd | nd | nd | nd |
| 24 | Apigenin 7-glucoside | nd | nd | nd | nd |
| 25 | Apigenin | nd | nd | nd | nd |
| 26 | Kaempferol | nd | nd | nd | nd |
| 27 | Luteolin | nd | nd | nd | nd |
| 28 | Pinoresinol | nd | nd | nd | nd |
| Assays | Flowers | Leaves | Stems | Roots | Trolox | EDTA |
|---|---|---|---|---|---|---|
| Phosphomolybdenum (EC50: mg/mL) |
1.06±0.003cd | 1.06±0.005c | 0.85±0.04b | 1.19±0.06d | 0.46±0.02a | - |
| CUPRAC reducing power (EC50: mg/mL) |
0.73±0.01c | 0.68±0.03c | 0.51±0.01b | 1.55±0.04d | 0.17±0.01a | - |
| FRAP reducing power (EC50: mg/mL) |
0.30±0.005d | 0.27±0.005c | 0.19±0.005b | 0.60±0.001e | 0.049±0.003a | - |
| DPPH radical (IC50: mg/mL) |
1.52±0.03d | 1.24±0.004c | 0.94±0.01b | 3.29±0.15e | 0.27±0.02a | - |
| ABTS radical cation (IC50: mg/mL) |
0.95±0.02c | 0.85±0.05c | 0.58±0.01b | 1.49±0.03d | 0.17±0.02a | - |
| Ferrous ion chelating (IC50: mg/mL) |
5.74±0.46c | na | 3.84±0.59b | 6.26±0.57c | 0.020±0.002a |
| Samples | AChE inhibition (IC50: mg/mL) |
BChE inhibition (IC50: mg/mL) |
Tyrosinase inhibition (IC50: mg/mL) |
α-Amylase inhibition (IC50: mg/mL) |
α-Glucosidase inhibition (IC50: mg/mL) |
|---|---|---|---|---|---|
| Flowers | 1.06±0.02b | 1.01±0.02b | 1.08±0.001c | 3.20±0.06b | 1.00±0.01a |
| Leaves | 1.30±0.02c | 1.04±0.01b | 1.08±0.001c | 3.10±0.06b | 0.98±0.004a |
| Stems | 1.23±0.07c | 1.04±0.03b | 1.05±0.003b | 3.10±0.05b | 1.00±0.003a |
| Roots | 1.02±0.02b | 1.01±0.02b | 1.13±0.003d | 3.48±0.01c | 1.02±0.003a |
| Galanthamine | 0.0032±0.0002a | 0.0031±0.0003a | - | - | - |
| Kojic acid | - | - | 0.082±0.002a | - | - |
| Acarbose | - | - | - | 0.95±0.02a | 1.12±0.030b |
| TAP | DPPH | ABTS | CUPRAC | FRAP | FICA | AChEIA | BChEIA | TIA | AAIA | AGIA | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| DPPH radical | 0.886 | ||||||||||
| ABTS radical cation | 0.948 | 0.973 | |||||||||
| CUPRAC reducing power | 0.883 | 0.990 | 0.966 | ||||||||
| FRAP reducing power | 0.927 | 0.992 | 0.986 | 0.990 | |||||||
| Ferrous ion chelating | 0.526 | 0.181 | 0.370 | 0.251 | 0.291 | ||||||
| RACI | 0.956 | 0.974 | 0.995 | 0.977 | 0.993 | 0.393 | |||||
| AChE inhibition | -0.570 | -0.799 | -0.703 | -0.718 | -0.732 | 0.364 | |||||
| BChE inhibition | -0.564 | -0.643 | -0.565 | -0.570 | -0.588 | 0.216 | 0.793 | ||||
| Tyrosinase inhibition | 0.920 | 0.962 | 0.966 | 0.985 | 0.982 | 0.385 | -0.612 | -0.491 | |||
| α-Amylase inhibition | 0.642 | 0.909 | 0.812 | 0.916 | 0.864 | -0.081 | -0.767 | -0.593 | 0.855 | ||
| α-Glucosidase inhibition | 0.396 | 0.734 | 0.589 | 0.724 | 0.667 | -0.395 | -0.753 | -0.507 | 0.650 | 0.906 | |
| Total flavonoid | 0.736 | 0.951 | 0.881 | 0.910 | 0.906 | -0.107 | -0.934 | -0.718 | 0.835 | 0.920 | 0.820 |
| Total phenolic | 0.922 | 0.989 | 0.982 | 0.992 | 0.999 | 0.298 | -0.716 | -0.557 | 0.988 | 0.867 | 0.673 |
| Hesperidin | 0.850 | 0.993 | 0.951 | 0.993 | 0.984 | 0.148 | -0.778 | -0.594 | 0.966 | 0.935 | 0.784 |
| (+)-Catechin | 0.957 | 0.819 | 0.919 | 0.825 | 0.869 | 0.668 | -0.448 | -0.439 | 0.866 | 0.555 | 0.232 |
| (-)-Epicatechin | 0.463 | 0.066 | 0.257 | 0.130 | 0.183 | 0.980 | 0.438 | 0.218 | 0.273 | -0.219 | -0.510 |
| Protocatechuic acid | 0.200 | 0.169 | 0.148 | 0.285 | 0.232 | 0.363 | 0.296 | 0.267 | 0.385 | 0.247 | 0.250 |
| Hyperoside | 0.801 | 0.913 | 0.868 | 0.950 | 0.925 | 0.239 | -0.579 | -0.440 | 0.960 | 0.889 | 0.764 |
| Verbascoside | 0.843 | 0.598 | 0.754 | 0.602 | 0.666 | 0.797 | -0.231 | -0.283 | 0.664 | 0.276 | -0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
